IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v171y2008i2p347-373.html
   My bibliography  Save this article

A flexible marginal modelling strategy for non‐monotone missing data

Author

Listed:
  • Ivy Jansen
  • Geert Molenberghs

Abstract

Summary. Much research has been devoted to modelling strategies for longitudinal data with missingness, recently especially within the missingness not at random context. In this paper, the relatively unexplored but practically highly relevant domain of non‐monotone missingness with multivariate ordinal responses is broached. For this, a dedicated version of the multivariate Dale model is formulated. Furthermore, we also assess the sensitivity of these models to their assumptions, by using the technique of global influence.

Suggested Citation

  • Ivy Jansen & Geert Molenberghs, 2008. "A flexible marginal modelling strategy for non‐monotone missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 347-373, April.
  • Handle: RePEc:bla:jorssa:v:171:y:2008:i:2:p:347-373
    DOI: 10.1111/j.1467-985X.2007.00524.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2007.00524.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2007.00524.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jansen, Ivy & Hens, Niel & Molenberghs, Geert & Aerts, Marc & Verbeke, Geert & Kenward, Michael G., 2006. "The nature of sensitivity in monotone missing not at random models," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 830-858, February.
    2. Ivy Jansen & Geert Molenberghs & Marc Aerts & Herbert Thijs & Kristel Van Steen, 2003. "A Local Influence Approach Applied to Binary Data from a Psychiatric Study," Biometrics, The International Biometric Society, vol. 59(2), pages 410-419, June.
    3. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    4. Molenberghs, Geert & Verbeke, Geert & Thijs, Herbert & Lesaffre, Emmanuel & Kenward, Michael G., 2001. "Influence analysis to assess sensitivity of the dropout process," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 93-113, July.
    5. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    6. Geert Molenberghs & Herbert Thijs & Michael G. Kenward & Geert Verbeke, 2003. "Sensitivity Analysis of Continuous Incomplete Longitudinal Outcomes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 112-135, February.
    7. Geert Molenberghs & Michael G. Kenward & Els Goetghebeur, 2001. "Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 15-29.
    8. Holt, D. Tim, 2007. "The Official Statistics Olympic Challenge: Wider, Deeper, Quicker, Better, Cheaper," The American Statistician, American Statistical Association, vol. 61, pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roula Tsonaka & Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2010. "Nonignorable Models for Intermittently Missing Categorical Longitudinal Responses," Biometrics, The International Biometric Society, vol. 66(3), pages 834-844, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caroline Beunckens & Cristina Sotto & Geert Molenberghs & Geert Verbeke, 2009. "A multifaceted sensitivity analysis of the Slovenian public opinion survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 171-196, May.
    2. O'Hara Hines, R.J. & Hines, W.G.S., 2007. "Covariance miss-specification and the local influence approach in sensitivity analyses of longitudinal data with drop-outs," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5537-5546, August.
    3. S. Eftekhari Mahabadi & M. Ganjali, 2012. "An index of local sensitivity to non-ignorability for parametric survival models with potential non-random missing covariate: an application to the SEER cancer registry data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2327-2348, July.
    4. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    5. Ivy Jansen & Geert Molenberghs & Marc Aerts & Herbert Thijs & Kristel Van Steen, 2003. "A Local Influence Approach Applied to Binary Data from a Psychiatric Study," Biometrics, The International Biometric Society, vol. 59(2), pages 410-419, June.
    6. Trias Wahyuni Rakhmawati & Geert Molenberghs & Geert Verbeke & Christel Faes, 2016. "Local influence diagnostics for incomplete overdispersed longitudinal counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1722-1737, July.
    7. Ivy Jansen & Ann Van den Troost & Geert Molenberghs & Ad A. Vermulst & Jan R. M. Gerris, 2006. "Modeling Partially Incomplete Marital Satisfaction Data," Sociological Methods & Research, , vol. 35(1), pages 113-136, August.
    8. Xiaoyan Shi & Hongtu Zhu & Joseph G. Ibrahim, 2009. "Local Influence for Generalized Linear Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1164-1174, December.
    9. Xie, Hui, 2012. "Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1287-1300.
    10. D. Nitsch & B. L. DeStavola & S. M. B. Morton & D. A. Leon, 2006. "Linkage bias in estimating the association between childhood exposures and propensity to become a mother: an example of simple sensitivity analyses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 493-505, July.
    11. Joseph Hogan, 2009. "Comments on: Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 59-64, May.
    12. Niansheng Tang & Sy-Miin Chow & Joseph G. Ibrahim & Hongtu Zhu, 2017. "Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 875-903, December.
    13. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    14. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
    15. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    16. Yu, Q. & Tang, W. & Ma, Y. & Gamble, S.A. & Tu, X.M., 2008. "Comparing multiple sensitivities and specificities with different diagnostic criteria: Applications to sexual abuse and sexual health research," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 27-37, September.
    17. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    18. Frederico Poleto & Geert Molenberghs & Carlos Paulino & Julio Singer, 2011. "Sensitivity analysis for incomplete continuous data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 589-606, November.
    19. Prosper Dovonon & Alastair Hall & Frank Kleibergen, 2018. "Inference in Second-Order Identi?ed Models," CIRANO Working Papers 2018s-36, CIRANO.
    20. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:171:y:2008:i:2:p:347-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.