IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v168y2005i2p267-306.html
   My bibliography  Save this article

Multiple‐bias modelling for analysis of observational data

Author

Listed:
  • Sander Greenland

Abstract

Summary. Conventional analytic results do not reflect any source of uncertainty other than random error, and as a result readers must rely on informal judgments regarding the effect of possible biases. When standard errors are small these judgments often fail to capture sources of uncertainty and their interactions adequately. Multiple‐bias models provide alternatives that allow one systematically to integrate major sources of uncertainty, and thus to provide better input to research planning and policy analysis. Typically, the bias parameters in the model are not identified by the analysis data and so the results depend completely on priors for those parameters. A Bayesian analysis is then natural, but several alternatives based on sensitivity analysis have appeared in the risk assessment and epidemiologic literature. Under some circumstances these methods approximate a Bayesian analysis and can be modified to do so even better. These points are illustrated with a pooled analysis of case–control studies of residential magnetic field exposure and childhood leukaemia, which highlights the diminishing value of conventional studies conducted after the early 1990s. It is argued that multiple‐bias modelling should become part of the core training of anyone who will be entrusted with the analysis of observational data, and should become standard procedure when random error is not the only important source of uncertainty (as in meta‐analysis and pooled analysis).

Suggested Citation

  • Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
  • Handle: RePEc:bla:jorssa:v:168:y:2005:i:2:p:267-306
    DOI: 10.1111/j.1467-985X.2004.00349.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2004.00349.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2004.00349.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. J. Copas, 1999. "What works?: selectivity models and meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 95-109.
    3. Sander Greenland, 2003. "Generalized Conjugate Priors for Bayesian Analysis of Risk and Survival Regressions," Biometrics, The International Biometric Society, vol. 59(1), pages 92-99, March.
    4. John Copas & Dan Jackson, 2004. "A Bound for Publication Bias Based on the Fraction of Unpublished Studies," Biometrics, The International Biometric Society, vol. 60(1), pages 146-153, March.
    5. G. M. Raab & C. A. Donnelly, 1999. "Information on sexual behaviour when some data are missing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(2), pages 117-133.
    6. Sander Greenland, 2001. "Sensitivity Analysis, Monte Carlo Risk Analysis, and Bayesian Uncertainty Assessment," Risk Analysis, John Wiley & Sons, vol. 21(4), pages 579-584, August.
    7. Nandini Dendukuri & Elham Rahme & Patrick Bélisle & Lawrence Joseph, 2004. "Bayesian Sample Size Determination for Prevalence and Diagnostic Test Studies in the Absence of a Gold Standard Test," Biometrics, The International Biometric Society, vol. 60(2), pages 388-397, June.
    8. Sander Greenland, 2001. "Putting Background Information About Relative Risks into Conjugate Prior Distributions," Biometrics, The International Biometric Society, vol. 57(3), pages 663-670, September.
    9. John Copas & Shinto Eguchi, 2001. "Local sensitivity approximations for selectivity bias," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 871-895.
    10. Geert Molenberghs & Michael G. Kenward & Els Goetghebeur, 2001. "Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 15-29.
    11. E. Rahme & L. Joseph & T. W. Gyorkos, 2000. "Bayesian sample size determination for estimating binomial parameters from data subject to misclassification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 119-128.
    12. Karl Claxton, 1999. "Bayesian approaches to the value of information: implications for the regulation of new pharmaceuticals," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 269-274, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Gustafson & Sander Greenland, 2006. "The Performance of Random Coefficient Regression in Accounting for Residual Confounding," Biometrics, The International Biometric Society, vol. 62(3), pages 760-768, September.
    2. Paul Gustafson, 2006. "Sample size implications when biases are modelled rather than ignored," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 865-881, October.
    3. Sander Greenland & Leeka Kheifets, 2006. "Leukemia Attributable to Residential Magnetic Fields: Results from Analyses Allowing for Study Biases," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 471-482, April.
    4. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    5. Mengke Li & Yukun Liu & Pengfei Li & Jing Qin, 2022. "Empirical likelihood meta-analysis with publication bias correction under Copas-like selection model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 93-112, February.
    6. Zhuoyu Wang & Nandini Dendukuri & Madhukar Pai & Lawrence Joseph, 2017. "Taking Costs and Diagnostic Test Accuracy into Account When Designing Prevalence Studies: An Application to Childhood Tuberculosis Prevalence," Medical Decision Making, , vol. 37(8), pages 922-929, November.
    7. Stamey, James & Gerlach, Richard, 2007. "Bayesian sample size determination for case-control studies with misclassification," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2982-2992, March.
    8. Michael R. Elliott & Anna Conlon & Yun Li, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 565-569, September.
    9. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    10. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    11. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    12. Bubb, Ryan & Kaufman, Alex, 2014. "Securitization and moral hazard: Evidence from credit score cutoff rules," Journal of Monetary Economics, Elsevier, vol. 63(C), pages 1-18.
    13. Edward C. F. Wilson & Miranda Mugford & Garry Barton & Lee Shepstone, 2016. "Efficient Research Design," Medical Decision Making, , vol. 36(3), pages 335-348, April.
    14. Peter B. Gilbert & Ronald J. Bosch & Michael G. Hudgens, 2003. "Sensitivity Analysis for the Assessment of Causal Vaccine Effects on Viral Load in HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 531-541, September.
    15. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    16. Michael Rosenblum & Nicholas P. Jewell & Mark van der Laan & Stephen Shiboski & Ariane van der Straten & Nancy Padian, 2009. "Analysing direct effects in randomized trials with secondary interventions: an application to human immunodeficiency virus prevention trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 443-465, April.
    17. Jincheng Zhou & James S. Hodges & Haitao Chu, 2020. "Rejoinder to “CACE and meta‐analysis (letter to the editor)” by Stuart Baker," Biometrics, The International Biometric Society, vol. 76(4), pages 1385-1389, December.
    18. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    19. Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020. "Wage premium of Communist Party membership: Evidence from China," Pacific Economic Review, Wiley Blackwell, vol. 25(3), pages 309-338, August.
    20. Jennifer Hill & Jane Waldfogel & Jeanne Brooks-Gunn, 2002. "Differential effects of high-quality child care," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 601-627.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:168:y:2005:i:2:p:267-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.