IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v50y2001i1p15-29.html
   My bibliography  Save this article

Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case

Author

Listed:
  • Geert Molenberghs
  • Michael G. Kenward
  • Els Goetghebeur

Abstract

Classical inferential procedures induce conclusions from a set of data to a population of interest, accounting for the imprecision resulting from the stochastic component of the model. Less attention is devoted to the uncertainty arising from (unplanned) incompleteness in the data. Through the choice of an identifiable model for non‐ignorable non‐response, one narrows the possible data‐generating mechanisms to the point where inference only suffers from imprecision. Some proposals have been made for assessing the sensitivity to these modelling assumptions; many are based on fitting several plausible but competing models. For example, we could assume that the missing data are missing at random in one model, and then fit an additional model where non‐random missingness is assumed. On the basis of data from a Slovenian plebiscite, conducted in 1991, to prepare for independence, it is shown that such an ad hoc procedure may be misleading. We propose an approach which identifies and incorporates both sources of uncertainty in inference: imprecision due to finite sampling and ignorance due to incompleteness. A simple sensitivity analysis considers a finite set of plausible models. We take this idea one step further by considering more degrees of freedom than the data support. This produces sets of estimates (regions of ignorance) and sets of confidence regions (combined into regions of uncertainty).

Suggested Citation

  • Geert Molenberghs & Michael G. Kenward & Els Goetghebeur, 2001. "Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 15-29.
  • Handle: RePEc:bla:jorssc:v:50:y:2001:i:1:p:15-29
    DOI: 10.1111/1467-9876.00217
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00217
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Nitsch & B. L. DeStavola & S. M. B. Morton & D. A. Leon, 2006. "Linkage bias in estimating the association between childhood exposures and propensity to become a mother: an example of simple sensitivity analyses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 493-505, July.
    2. Joseph Hogan, 2009. "Comments on: Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 59-64, May.
    3. Ivy Jansen & Geert Molenberghs & Marc Aerts & Herbert Thijs & Kristel Van Steen, 2003. "A Local Influence Approach Applied to Binary Data from a Psychiatric Study," Biometrics, The International Biometric Society, vol. 59(2), pages 410-419, June.
    4. Andrzej S. Kosinski & Huiman X. Barnhart, 2003. "Accounting for Nonignorable Verification Bias in Assessment of Diagnostic Tests," Biometrics, The International Biometric Society, vol. 59(1), pages 163-171, March.
    5. Margarita Moreno-Betancur & Grégoire Rey & Aurélien Latouche, 2015. "Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure," Biometrics, The International Biometric Society, vol. 71(2), pages 498-507, June.
    6. Mauricio Sadinle & Jerome P. Reiter, 2017. "Itemwise conditionally independent nonresponse modelling for incomplete multivariate data," Biometrika, Biometrika Trust, vol. 104(1), pages 207-220.
    7. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    8. Frederico Poleto & Geert Molenberghs & Carlos Paulino & Julio Singer, 2011. "Sensitivity analysis for incomplete continuous data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 589-606, November.
    9. Ivy Jansen & Ann Van den Troost & Geert Molenberghs & Ad A. Vermulst & Jan R. M. Gerris, 2006. "Modeling Partially Incomplete Marital Satisfaction Data," Sociological Methods & Research, , vol. 35(1), pages 113-136, August.
    10. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    11. Kim, Seongyong & Park, Yousung & Kim, Daeyoung, 2015. "On missing-at-random mechanism in two-way incomplete contingency tables," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 196-203.
    12. Caroline Beunckens & Cristina Sotto & Geert Molenberghs & Geert Verbeke, 2009. "A multifaceted sensitivity analysis of the Slovenian public opinion survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 171-196, May.
    13. Frederico Z. Poleto & Julio M. Singer & Carlos Daniel Paulino, 2011. "Comparing diagnostic tests with missing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(6), pages 1207-1222, April.
    14. Ivy Jansen & Geert Molenberghs, 2008. "A flexible marginal modelling strategy for non‐monotone missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 347-373, April.
    15. Andrew J. Copas & Vern T. Farewell & Catherine H. Mercer & Guiqing Yao, 2004. "The sensitivity of estimates of the change in population behaviour to realistic changes in bias in repeated surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(4), pages 579-595, November.
    16. Shin-Soo Kang & Kenneth Koehler & Michael Larsen, 2012. "Fractional imputation for incomplete two-way contingency tables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 581-599, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:50:y:2001:i:1:p:15-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.