IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i524p1742-1758.html
   My bibliography  Save this article

Tractable Bayesian Variable Selection: Beyond Normality

Author

Listed:
  • David Rossell
  • Francisco J. Rubio

Abstract

Bayesian variable selection often assumes normality, but the effects of model misspecification are not sufficiently understood. There are sound reasons behind this assumption, particularly for large p: ease of interpretation, analytical, and computational convenience. More flexible frameworks exist, including semi- or nonparametric models, often at the cost of some tractability. We propose a simple extension that allows for skewness and thicker-than-normal tails but preserves tractability. It leads to easy interpretation and a log-concave likelihood that facilitates optimization and integration. We characterize asymptotically parameter estimation and Bayes factor rates, under certain model misspecification. Under suitable conditions, misspecified Bayes factors induce sparsity at the same rates than under the correct model. However, the rates to detect signal change by an exponential factor, often reducing sensitivity. These deficiencies can be ameliorated by inferring the error distribution, a simple strategy that can improve inference substantially. Our work focuses on the likelihood and can be combined with any likelihood penalty or prior, but here we focus on nonlocal priors to induce extra sparsity and ameliorate finite-sample effects caused by misspecification. We show the importance of considering the likelihood rather than solely the prior, for Bayesian variable selection. The methodology is in R package ‘mombf.’ Supplementary materials for this article are available online.

Suggested Citation

  • David Rossell & Francisco J. Rubio, 2018. "Tractable Bayesian Variable Selection: Beyond Normality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1742-1758, October.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1742-1758
    DOI: 10.1080/01621459.2017.1371025
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1371025
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1371025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Rossell & Oriol Abril & Anirban Bhattacharya, 2021. "Approximate Laplace approximations for scalable model selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 853-879, September.
    2. Zhang, Chun-Xia & Xu, Shuang & Zhang, Jiang-She, 2019. "A novel variational Bayesian method for variable selection in logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 1-19.
    3. Mai Dao & Min Wang & Souparno Ghosh & Keying Ye, 2022. "Bayesian variable selection and estimation in quantile regression using a quantile-specific prior," Computational Statistics, Springer, vol. 37(3), pages 1339-1368, July.
    4. Francisco J. Rubio Alvarez, 2020. "Letter to the Editor: ‘On Quantile‐based Asymmetric Family of Distributions: Properties and Inference’," International Statistical Review, International Statistical Institute, vol. 88(3), pages 793-796, December.
    5. Jack Jewson & David Rossell, 2022. "General Bayesian loss function selection and the use of improper models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1640-1665, November.
    6. Nadja Klein & Michael Stanley Smith, 2021. "Bayesian variable selection for non‐Gaussian responses: a marginally calibrated copula approach," Biometrics, The International Biometric Society, vol. 77(3), pages 809-823, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1742-1758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.