IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i1p155-175.html
   My bibliography  Save this article

Measuring Discontinuities in Time Series Obtained with Repeated Sample Surveys

Author

Listed:
  • Jan van den Brakel
  • Xichuan (Mark) Zhang
  • Siu‐Ming Tam

Abstract

A key requirement of repeated surveys conducted by national statistical institutes is the comparability of estimates over time, resulting in uninterrupted time series describing the evolution of finite population parameters. This is often an argument to keep survey processes unchanged as long as possible. It is nevertheless inevitable that a survey process will need to be redesigned from time to time, for example, to improve or update methods or implement more cost‐effective data collection procedures. It is important to quantify the systematic effects or discontinuities of a new survey process on the estimates of a repeated survey to avoid a disturbance in the comparability of estimates over time. This paper reviews different statistical methods that can be used to measure discontinuities and manage the risk due to a survey process redesign.

Suggested Citation

  • Jan van den Brakel & Xichuan (Mark) Zhang & Siu‐Ming Tam, 2020. "Measuring Discontinuities in Time Series Obtained with Repeated Sample Surveys," International Statistical Review, International Statistical Institute, vol. 88(1), pages 155-175, April.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:1:p:155-175
    DOI: 10.1111/insr.12347
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12347
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pfeffermann, Danny, 1991. "Estimation and Seasonal Adjustment of Population Means Using Data from Repeated Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 177-177, April.
    2. Lynn M. R. Ybarra & Sharon L. Lohr, 2008. "Small area estimation when auxiliary information is measured with error," Biometrika, Biometrika Trust, vol. 95(4), pages 919-931.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, December.
    4. Krieg, Sabine & van den Brakel, Jan A., 2012. "Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2918-2933.
    5. James Chipperfield & Philip Bell, 2010. "Embedded experiments in repeated and overlapping surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 51-66, January.
    6. Pfeffermann, Danny, 1991. "Estimation and Seasonal Adjustment of Population Means Using Data from Repeated Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 163-175, April.
    7. Jan A. Van Den Brakel, 2008. "Design‐based analysis of embedded experiments with applications in the Dutch Labour Force Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 581-613, June.
    8. Jan A. Brakel & Bart Buelens & Harm-Jan Boonstra, 2016. "Small area estimation to quantify discontinuities in repeated sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 229-250, January.
    9. Robert E. Yuskavage, 2007. "COnverting Historical Industry Time Series Data from SIC to NAICS," BEA Papers 0085, Bureau of Economic Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan van den Brakel & Martijn Souren & Sabine Krieg, 2022. "Estimating monthly labour force figures during the COVID‐19 pandemic in the Netherlands," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1560-1583, October.
    2. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2020. "A Study of Discontinuity Effects in Regression Inference based on Web-Augmented Mixed Mode Surveys," Research Papers in Economics 2020-03, University of Trier, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan A. Brakel & Sabine Krieg, 2016. "Small area estimation with state space common factor models for rotating panels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 763-791, June.
    2. Weigand Roland & Wanger Susanne & Zapf Ines, 2018. "Factor Structural Time Series Models for Official Statistics with an Application to Hours Worked in Germany," Journal of Official Statistics, Sciendo, vol. 34(1), pages 265-301, March.
    3. Oksana Bollineni‐Balabay & Jan van den Brakel & Franz Palm & Harm Jan Boonstra, 2017. "Multilevel hierarchical Bayesian versus state space approach in time series small area estimation: the Dutch Travel Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1281-1308, October.
    4. Jo Thori Lind, 2005. "Repeated surveys and the Kalman filter," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 418-427, December.
    5. Caterina Schiavoni & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "A dynamic factor model approach to incorporate Big Data in state space models for official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 324-353, January.
    6. Krieg, Sabine & van den Brakel, Jan A., 2012. "Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2918-2933.
    7. Caio Gonçalves & Luna Hidalgo & Denise Silva & Jan van den Brakel, 2022. "Single‐month unemployment rate estimates for the Brazilian Labour Force Survey using state‐space models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1707-1732, October.
    8. Jan van den Brakel & Martijn Souren & Sabine Krieg, 2022. "Estimating monthly labour force figures during the COVID‐19 pandemic in the Netherlands," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1560-1583, October.
    9. Caterina Schiavoni & Siem Jan Koopman & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "Time-varying state correlations in state space models and their estimation via indirect inference," Tinbergen Institute Discussion Papers 21-020/III, Tinbergen Institute.
    10. Jan Kordos, 2012. "Application of rotation methods in sample surveys in Poland," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(2), pages 243-260, June.
    11. Danny Pfeffermann, 2022. "Time series modelling of repeated survey data for estimation of finite population parameters," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1757-1777, October.
    12. Susanne Wanger & Roland Weigand & Ines Zapf, 2016. "Measuring hours worked in Germany – Contents, data and methodological essentials of the IAB working time measurement concept [Die Berechnung der geleisteten Arbeitsstunden in Deutschland – Inhalte,," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 49(3), pages 213-238, November.
    13. Panayotis Christidis & Elena Navajas Cawood & Martijn Brons & Burkhard Schade & Antonio Soria, 2014. "Future employment in transport: Analysis of labour supply and demand," JRC Research Reports JRC93302, Joint Research Centre.
    14. Jo Thori Lind, 2002. "Small continuous surveys and the Kalman filter," Discussion Papers 333, Statistics Norway, Research Department.
    15. Harm Jan Boonstra & Jan A. Van Den Brakel & Bart Buelens & Sabine Krieg & Marc Smeets, 2008. "Towards small area estimation at Statistics Netherlands," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 21-49.
    16. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    17. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    18. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    19. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    20. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:1:p:155-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.