IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/333.html
   My bibliography  Save this paper

Small continuous surveys and the Kalman filter

Author

Abstract

The time series nature of repeated surveys is seldom taken into account. I present a statistical model of repeated surveys and construct a computationally feasible estimator based on the Kalman filter. The novelty is that the estimator efficiently uses the whole underlying data set. However, for computational purposes, we only need the first and second empirical moments of the data.

Suggested Citation

  • Jo Thori Lind, 2002. "Small continuous surveys and the Kalman filter," Discussion Papers 333, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:333
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp333.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pfeffermann, Danny, 1991. "Estimation and Seasonal Adjustment of Population Means Using Data from Repeated Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 177-177, April.
    2. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    3. Andrew Harvey & Chia‐Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
    4. Pfeffermann, Danny, 1991. "Estimation and Seasonal Adjustment of Population Means Using Data from Repeated Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 163-175, April.
    5. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jo Thori Lind, 2005. "Repeated surveys and the Kalman filter," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 418-427, December.
    2. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    3. Grassi, Stefano & Proietti, Tommaso & Frale, Cecilia & Marcellino, Massimiliano & Mazzi, Gianluigi, 2015. "EuroMInd-C: A disaggregate monthly indicator of economic activity for the Euro area and member countries," International Journal of Forecasting, Elsevier, vol. 31(3), pages 712-738.
    4. Danny Pfeffermann, 2022. "Time series modelling of repeated survey data for estimation of finite population parameters," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1757-1777, October.
    5. Jan A. Brakel & Sabine Krieg, 2016. "Small area estimation with state space common factor models for rotating panels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 763-791, June.
    6. Caterina Schiavoni & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "A dynamic factor model approach to incorporate Big Data in state space models for official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 324-353, January.
    7. Weigand Roland & Wanger Susanne & Zapf Ines, 2018. "Factor Structural Time Series Models for Official Statistics with an Application to Hours Worked in Germany," Journal of Official Statistics, Sciendo, vol. 34(1), pages 265-301, March.
    8. Krieg, Sabine & van den Brakel, Jan A., 2012. "Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2918-2933.
    9. Caio Gonçalves & Luna Hidalgo & Denise Silva & Jan van den Brakel, 2022. "Single‐month unemployment rate estimates for the Brazilian Labour Force Survey using state‐space models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1707-1732, October.
    10. Caterina Schiavoni & Siem Jan Koopman & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "Time-varying state correlations in state space models and their estimation via indirect inference," Tinbergen Institute Discussion Papers 21-020/III, Tinbergen Institute.
    11. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    12. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    13. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    14. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    15. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    16. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    17. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    19. Jan Kordos, 2012. "Application of rotation methods in sample surveys in Poland," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(2), pages 243-260, June.
    20. Flavio Cunha & James J. Heckman, 2008. "Formulating, Identifying and Estimating the Technology of Cognitive and Noncognitive Skill Formation," Journal of Human Resources, University of Wisconsin Press, vol. 43(4).

    More about this item

    Keywords

    Surveys; Kalman filter; time series.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.