IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v180y2017i4p1281-1308.html
   My bibliography  Save this article

Multilevel hierarchical Bayesian versus state space approach in time series small area estimation: the Dutch Travel Survey

Author

Listed:
  • Oksana Bollineni‐Balabay
  • Jan van den Brakel
  • Franz Palm
  • Harm Jan Boonstra

Abstract

This study compares state space models (estimated with the Kalman filter with a frequentist approach to hyperparameter estimation) with multilevel time series models (based on the hierarchical Bayesian framework). The application chosen is the Dutch Travel Survey featuring small sample sizes and discontinuities caused by the survey redesigns. Both modelling approaches deliver similar point and variance estimates. Slight differences in model‐based variance estimates appear mostly in small‐scaled domains and are due to neglecting uncertainty around the hyperparameter estimates in the state space models, and to a lesser extent to skewness in the posterior distributions of the parameters of interest. The results suggest that the reduction in design‐based standard errors with the hierarchical Bayesian approach is over 50% at the provincial level, and over 30% at the national level.

Suggested Citation

  • Oksana Bollineni‐Balabay & Jan van den Brakel & Franz Palm & Harm Jan Boonstra, 2017. "Multilevel hierarchical Bayesian versus state space approach in time series small area estimation: the Dutch Travel Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1281-1308, October.
  • Handle: RePEc:bla:jorssa:v:180:y:2017:i:4:p:1281-1308
    DOI: 10.1111/rssa.12332
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12332
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    2. Krieg, Sabine & van den Brakel, Jan A., 2012. "Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2918-2933.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 631-666, December.
    5. Oksana Bollineni-Balabay & Jan Brakel & Franz Palm, 2016. "Multivariate state space approach to variance reduction in series with level and variance breaks due to survey redesigns," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 377-402, February.
    6. Jan A. Brakel & Sabine Krieg, 2016. "Small area estimation with state space common factor models for rotating panels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 763-791, June.
    7. Pfeffermann, Danny, 1991. "Estimation and Seasonal Adjustment of Population Means Using Data from Repeated Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 177-177, April.
    8. Pfeffermann, Danny & Tiller, Richard, 2006. "Small-Area Estimation With StateSpace Models Subject to Benchmark Constraints," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1387-1397, December.
    9. Danny Pfeffermann & Anna Sikov & Richard Tiller, 2014. "Rejoinder on: Single- and two-stage cross-sectional and time series benchmarking procedures for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 686-690, December.
    10. Pfeffermann, Danny, 1991. "Estimation and Seasonal Adjustment of Population Means Using Data from Repeated Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(2), pages 163-175, April.
    11. Danny Pfeffermann & Richard Tiller, 2005. "Bootstrap Approximation to Prediction MSE for State–Space Models with Estimated Parameters," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 893-916, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harm Jan Boonstra & Jan van den Brakel & Sumonkanti Das, 2021. "Multilevel time series modelling of mobility trends in the Netherlands for small domains," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 985-1007, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan A. Brakel & Sabine Krieg, 2016. "Small area estimation with state space common factor models for rotating panels," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 763-791, June.
    2. Danny Pfeffermann, 2022. "Time series modelling of repeated survey data for estimation of finite population parameters," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1757-1777, October.
    3. Weigand Roland & Wanger Susanne & Zapf Ines, 2018. "Factor Structural Time Series Models for Official Statistics with an Application to Hours Worked in Germany," Journal of Official Statistics, Sciendo, vol. 34(1), pages 265-301, March.
    4. Caio Gonçalves & Luna Hidalgo & Denise Silva & Jan van den Brakel, 2022. "Single‐month unemployment rate estimates for the Brazilian Labour Force Survey using state‐space models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1707-1732, October.
    5. Jan van den Brakel & Martijn Souren & Sabine Krieg, 2022. "Estimating monthly labour force figures during the COVID‐19 pandemic in the Netherlands," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1560-1583, October.
    6. Krieg, Sabine & van den Brakel, Jan A., 2012. "Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2918-2933.
    7. Jan van den Brakel & Xichuan (Mark) Zhang & Siu‐Ming Tam, 2020. "Measuring Discontinuities in Time Series Obtained with Repeated Sample Surveys," International Statistical Review, International Statistical Institute, vol. 88(1), pages 155-175, April.
    8. Susanne Wanger & Roland Weigand & Ines Zapf, 2016. "Measuring hours worked in Germany – Contents, data and methodological essentials of the IAB working time measurement concept [Die Berechnung der geleisteten Arbeitsstunden in Deutschland – Inhalte,," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 49(3), pages 213-238, November.
    9. Jo Thori Lind, 2005. "Repeated surveys and the Kalman filter," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 418-427, December.
    10. Caterina Schiavoni & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "A dynamic factor model approach to incorporate Big Data in state space models for official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 324-353, January.
    11. Zhang Junni L. & Bryant John, 2020. "Fully Bayesian Benchmarking of Small Area Estimation Models," Journal of Official Statistics, Sciendo, vol. 36(1), pages 197-223, March.
    12. Harm Jan Boonstra & Jan A. Van Den Brakel & Bart Buelens & Sabine Krieg & Marc Smeets, 2008. "Towards small area estimation at Statistics Netherlands," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 21-49.
    13. Caterina Schiavoni & Siem Jan Koopman & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "Time-varying state correlations in state space models and their estimation via indirect inference," Tinbergen Institute Discussion Papers 21-020/III, Tinbergen Institute.
    14. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    15. Woojoo Lee & Hans‐Peter Piepho & Youngjo Lee, 2021. "Resolving the ambiguity of random‐effects models with singular precision matrix," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 482-499, November.
    16. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    17. McNeil, James, 2023. "Monetary policy and the term structure of inflation expectations with information frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    18. Jan Kordos, 2012. "Application of rotation methods in sample surveys in Poland," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(2), pages 243-260, June.
    19. Arias, Maria A. & Gascon, Charles S. & Rapach, David E., 2016. "Metro business cycles," Journal of Urban Economics, Elsevier, vol. 94(C), pages 90-108.
    20. Rodríguez, Alejandro & Ruiz, Esther, 2012. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 62-74, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:180:y:2017:i:4:p:1281-1308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.