IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2076-2088.html
   My bibliography  Save this article

Identifying alert concentrations using a model‐based bootstrap approach

Author

Listed:
  • Kathrin Möllenhoff
  • Kirsten Schorning
  • Franziska Kappenberg

Abstract

The determination of alert concentrations, where a pre‐specified threshold of the response variable is exceeded, is an important goal of concentration–response studies. The traditional approach is based on investigating the measured concentrations and attaining statistical significance of the alert concentration by using a multiple t‐test procedure. In this paper, we propose a new model‐based method to identify alert concentrations, based on fitting a concentration–response curve and constructing a simultaneous confidence band for the difference of the response of a concentration compared to the control. In order to obtain these confidence bands, we use a bootstrap approach which can be applied to any functional form of the concentration–response curve. This particularly offers the possibility to investigate also those situations where the concentration–response relationship is not monotone and, moreover, to detect alerts at concentrations which were not measured during the study, providing a highly flexible framework for the problem at hand.

Suggested Citation

  • Kathrin Möllenhoff & Kirsten Schorning & Franziska Kappenberg, 2023. "Identifying alert concentrations using a model‐based bootstrap approach," Biometrics, The International Biometric Society, vol. 79(3), pages 2076-2088, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2076-2088
    DOI: 10.1111/biom.13799
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13799
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    2. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Holger Dette & Kathrin Möllenhoff & Stanislav Volgushev & Frank Bretz, 2018. "Equivalence of Regression Curves," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 711-729, April.
    4. F. Bretz & J. C. Pinheiro & M. Branson, 2005. "Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies," Biometrics, The International Biometric Society, vol. 61(3), pages 738-748, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathrin Möllenhoff & Frank Bretz & Holger Dette, 2020. "Equivalence of regression curves sharing common parameters," Biometrics, The International Biometric Society, vol. 76(2), pages 518-529, June.
    2. Marco Bee, 2024. "On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 251-269, June.
    3. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    4. Javier Alejo & Antonio F. Galvao & Julián Martinez-Iriarte & Gabriel Montes-Rojas, 2023. "Unconditional Quantile Partial Effects via Conditional Quantile Regression," Working Papers 217, Red Nacional de Investigadores en Economía (RedNIE).
    5. Zhilova, Mayya, 2015. "Simultaneous likelihood-based bootstrap confidence sets for a large number of models," SFB 649 Discussion Papers 2015-031, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Jean-Pierre FLORENS & Joel L. HOROWITZ & Ingrid VAN KEILEGOM, 2017. "Bias-Corrected Confidence Intervals in a Class of Linear Inverse Problems," Annals of Economics and Statistics, GENES, issue 128, pages 203-228.
    7. repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
    8. Dette, Holger & Bretz, Frank, 2007. "Optimal designs for dose finding studies," Technical Reports 2007,01, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    10. C. Baayen & P. Hougaard & C. B. Pipper, 2015. "Testing effect of a drug using multiple nested models for the dose–response," Biometrics, The International Biometric Society, vol. 71(2), pages 417-427, June.
    11. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.
    12. Kun Yi & Yoshihiko Nishiyama, 2022. "Smoothed bootstrapping kernel density estimation under higher order kernel," KIER Working Papers 1081, Kyoto University, Institute of Economic Research.
    13. Qiqi Deng & Kun Wang & Xiaofei Bai & Naitee Ting, 2019. "A Cautionary Note When a Dose-Ranging Study is Used for Proving the Concept," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 127-140, April.
    14. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    15. Beibei Guo & Ying Yuan, 2023. "DROID: dose‐ranging approach to optimizing dose in oncology drug development," Biometrics, The International Biometric Society, vol. 79(4), pages 2907-2919, December.
    16. Frank Schaarschmidt & Christian Ritz & Ludwig A. Hothorn, 2022. "The Tukey trend test: Multiplicity adjustment using multiple marginal models," Biometrics, The International Biometric Society, vol. 78(2), pages 789-797, June.
    17. Horowitz, Joel L. & Lee, Sokbae, 2017. "Nonparametric estimation and inference under shape restrictions," Journal of Econometrics, Elsevier, vol. 201(1), pages 108-126.
    18. Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
    19. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    20. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    21. Bornkamp, Björn & Pinheiro, José & Bretz, Frank, 2009. "MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i07).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2076-2088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.