IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/67-15.html
   My bibliography  Save this paper

Nonparametric estimation and inference under shape restrictions

Author

Listed:
  • Joel L. Horowitz

    (Institute for Fiscal Studies and Northwestern University)

  • Sokbae (Simon) Lee

    (Institute for Fiscal Studies and Columbia University)

Abstract

Economic theory often provides shape restrictions on functions of interest in applications, such as monotonicity, convexity, non-increasing (non-decreasing) returns to scale, or the Slutsky inequality of consumer theory; but economic theory does not provide finite-dimensional parametric models. This motivates nonparametric estimation under shape restrictions. Nonparametric estimates are often very noisy. Shape restrictions stabilize nonparametric estimates without imposing arbitrary restrictions, such as additivity or a single-index structure, that may be inconsistent with economic theory and the data. This paper explains how to estimate and obtain an asymptotic uniform confidence band for a conditional mean function under possibly nonlinear shape restrictions, such as the Slutsky inequality. The results of Monte Carlo experiments illustrate the finite-sample performance of the method, and an empirical example illustrates its use in an application.

Suggested Citation

  • Joel L. Horowitz & Sokbae (Simon) Lee, 2015. "Nonparametric estimation and inference under shape restrictions," CeMMAP working papers CWP67/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:67/15
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp671515.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jacho-Chávez, David & Lewbel, Arthur & Linton, Oliver, 2010. "Identification and nonparametric estimation of a transformed additively separable model," Journal of Econometrics, Elsevier, vol. 156(2), pages 392-407, June.
    2. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    3. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    4. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    5. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2013. "Testing functional inequalities," Journal of Econometrics, Elsevier, vol. 172(1), pages 14-32.
    6. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2014. "A Practical Two‐Step Method for Testing Moment Inequalities," Econometrica, Econometric Society, vol. 82, pages 1979-2002, September.
    7. Hall, Peter & Yatchew, Adonis, 2005. "Unified approach to testing functional hypotheses in semiparametric contexts," Journal of Econometrics, Elsevier, vol. 127(2), pages 225-252, August.
    8. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2013. "Nonparametric estimation of a heterogeneous demand function under the Slutsky inequality restriction," CeMMAP working papers CWP54/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2012. "Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation," Quantitative Economics, Econometric Society, vol. 3(1), pages 29-51, March.
    10. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    11. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    12. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    13. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    14. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    15. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    16. E. Mammen & C. Thomas‐Agnan, 1999. "Smoothing Splines and Shape Restrictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(2), pages 239-252, June.
    17. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    18. Richard Blundell & Joel Horowitz & Matthias Parey, 2017. "Nonparametric Estimation of a Nonseparable Demand Function under the Slutsky Inequality Restriction," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 291-304, May.
    19. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    20. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Fang & Juwon Seo, 2021. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Econometrica, Econometric Society, vol. 89(5), pages 2439-2458, September.
    2. Yu Zhu, 2020. "Inference in nonparametric/semiparametric moment equality models with shape restrictions," Quantitative Economics, Econometric Society, vol. 11(2), pages 609-636, May.
    3. Frazier, David T. & Koo, Bonsoo, 2021. "Indirect inference for locally stationary models," Journal of Econometrics, Elsevier, vol. 223(1), pages 1-27.
    4. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    5. Adams-Prassl, Abigail, 2019. "Mutually Consistent Revealed Preference Demand Predictions," CEPR Discussion Papers 13580, C.E.P.R. Discussion Papers.
    6. Koohyun Kwon & Soonwoo Kwon, 2020. "Adaptive Inference in Multivariate Nonparametric Regression Models Under Monotonicity," Papers 2011.14219, arXiv.org.
    7. Olivier Scaillet, 2016. "On ill‐posedness of nonparametric instrumental variable regression with convexity constraints," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 232-236, June.
    8. Lee, Ying-Ying & Bhattacharya, Debopam, 2019. "Applied welfare analysis for discrete choice with interval-data on income," Journal of Econometrics, Elsevier, vol. 211(2), pages 361-387.
    9. Freyberger, Joachim & Rai, Yoshiyasu, 2018. "Uniform confidence bands: Characterization and optimality," Journal of Econometrics, Elsevier, vol. 204(1), pages 119-130.
    10. Liu, Ruixuan & Yu, Zhengfei, 2022. "Sample selection models with monotone control functions," Journal of Econometrics, Elsevier, vol. 226(2), pages 321-342.
    11. repec:gnv:wpaper:unige:79975 is not listed on IDEAS
    12. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
    13. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    14. Eric Auerbach, 2019. "Identification and Estimation of a Partially Linear Regression Model using Network Data," Papers 1903.09679, arXiv.org, revised Jun 2021.
    15. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    16. Harold D. Chiang & Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Linear programming approach to nonparametric inference under shape restrictions: with an application to regression kink designs," Papers 2102.06586, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    2. Aradillas-López, Andrés & Rosen, Adam M., 2022. "Inference in ordered response games with complete information," Journal of Econometrics, Elsevier, vol. 226(2), pages 451-476.
    3. Denis Chetverikov & Daniel Wilhelm, 2016. "Nonparametric instrumental variable estimation under monotonicity," CeMMAP working papers 48/16, Institute for Fiscal Studies.
    4. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    5. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    6. Hsu, Yu-Chin & Shen, Shu, 2019. "Testing treatment effect heterogeneity in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 208(2), pages 468-486.
    7. Armstrong, Timothy B. & Chan, Hock Peng, 2016. "Multiscale adaptive inference on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 194(1), pages 24-43.
    8. Aradillas-López, Andrés & Gandhi, Amit & Quint, Daniel, 2016. "A simple test for moment inequality models with an application to English auctions," Journal of Econometrics, Elsevier, vol. 194(1), pages 96-115.
    9. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Andrews, Donald W.K. & Shi, Xiaoxia, 2017. "Inference based on many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 196(2), pages 275-287.
    11. Bugni, Federico A. & Canay, Ivan A. & Shi, Xiaoxia, 2015. "Specification tests for partially identified models defined by moment inequalities," Journal of Econometrics, Elsevier, vol. 185(1), pages 259-282.
    12. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    13. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    14. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    15. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    16. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric Instrumental Variable Estimation Under Monotonicity," Econometrica, Econometric Society, vol. 85, pages 1303-1320, July.
    17. Krasnokutskaya, Elena & Song, Kyungchul & Tang, Xun, 2022. "Estimating unobserved individual heterogeneity using pairwise comparisons," Journal of Econometrics, Elsevier, vol. 226(2), pages 477-497.
    18. Armstrong, Timothy B., 2015. "Asymptotically exact inference in conditional moment inequality models," Journal of Econometrics, Elsevier, vol. 186(1), pages 51-65.
    19. Sun, Zhenting, 2023. "Instrument validity for heterogeneous causal effects," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:67/15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.