IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i522p711-729.html
   My bibliography  Save this article

Equivalence of Regression Curves

Author

Listed:
  • Holger Dette
  • Kathrin Möllenhoff
  • Stanislav Volgushev
  • Frank Bretz

Abstract

This article investigates the problem whether the difference between two parametric models m1, m2 describing the relation between a response variable and several covariates in two different groups is practically irrelevant, such that inference can be performed on the basis of the pooled sample. Statistical methodology is developed to test the hypotheses H0: d(m1, m2) ⩾ ϵ versus H1: d(m1, m2) < ϵ to demonstrate equivalence between the two regression curves m1, m2 for a prespecified threshold ϵ, where d denotes a distance measuring the distance between m1 and m2. Our approach is based on the asymptotic properties of a suitable estimator d(m^1,m^2)$d(\hat{m}_1, \hat{m}_2)$ of this distance. To improve the approximation of the nominal level for small sample sizes, a bootstrap test is developed, which addresses the specific form of the interval hypotheses. In particular, data have to be generated under the null hypothesis, which implicitly defines a manifold for the parameter vector. The results are illustrated by means of a simulation study and a data example. It is demonstrated that the new methods substantially improve currently available approaches with respect to power and approximation of the nominal level.

Suggested Citation

  • Holger Dette & Kathrin Möllenhoff & Stanislav Volgushev & Frank Bretz, 2018. "Equivalence of Regression Curves," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 711-729, April.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:711-729
    DOI: 10.1080/01621459.2017.1281813
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1281813
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1281813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastian, P. & Dette, H. & Koletzko, L., 2024. "Testing equivalence of multinomial distributions — A constrained bootstrap approach," Statistics & Probability Letters, Elsevier, vol. 206(C).
    2. Julie K. Furberg & Christian B. Pipper & Thomas Scheike, 2021. "Testing equivalence of survival before but not after end of follow-up," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 216-243, April.
    3. Eustasio del Barrio & Hristo Inouzhe & Carlos Matrán, 2020. "Box-Constrained Monotone Approximations to Lipschitz Regularizations, with Applications to Robust Testing," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 65-87, October.
    4. Kathrin Möllenhoff & Frank Bretz & Holger Dette, 2020. "Equivalence of regression curves sharing common parameters," Biometrics, The International Biometric Society, vol. 76(2), pages 518-529, June.
    5. Kathrin Möllenhoff & Kirsten Schorning & Franziska Kappenberg, 2023. "Identifying alert concentrations using a model‐based bootstrap approach," Biometrics, The International Biometric Society, vol. 79(3), pages 2076-2088, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:711-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.