IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/1081.html
   My bibliography  Save this paper

Smoothed bootstrapping kernel density estimation under higher order kernel

Author

Listed:
  • Kun Yi

    (Graduate Shool of Economics, Kyoto University)

  • Yoshihiko Nishiyama

    (Institue of Economic Research, Kyoto University)

Abstract

Smoothed bootstrap method is a useful method to approximates the bias of Kernel density estimation. However, it can only be applied when the kernel function is of second order. In this study, we propose a novel method to generalize the smoothed bootstrap method to higher order kernel for estimating the bias and construct bias corrected estimator based on it. Theoretical formulation and numerical simulation demonstrate that the proposed method achieve better performance compared to the traditional bias correction method.

Suggested Citation

  • Kun Yi & Yoshihiko Nishiyama, 2022. "Smoothed bootstrapping kernel density estimation under higher order kernel," KIER Working Papers 1081, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:1081
    as

    Download full text from publisher

    File URL: https://www.kier.kyoto-u.ac.jp/wp/wp-content/uploads/2022/09/DP1081.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 767-779, April.
    2. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Hall, P. & Murison, R. D., 1993. "Correcting the Negativity of High-Order Kernel Density Estimators," Journal of Multivariate Analysis, Elsevier, vol. 47(1), pages 103-122, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    2. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162, arXiv.org, revised Feb 2020.
    3. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    4. Balila Acurio & Alessandro Tomarchio, 2024. "The Effects of Business Credit Support Programs: Evidence from a Regression Discontinuity Design," IHEID Working Papers 20-2024, Economics Section, The Graduate Institute of International Studies.
    5. Bartnicki, Sławomir & Alimowski, Maciej & Górecki, Maciej A., 2022. "The anomalous electoral advantage: Evidence from over 17,000 mayoral candidacies in Poland," European Journal of Political Economy, Elsevier, vol. 72(C).
    6. Matias D. Cattaneo & Rocío Titiunik & Gonzalo Vazquez-Bare, 2020. "Analysis of regression-discontinuity designs with multiple cutoffs or multiple scores," Stata Journal, StataCorp LP, vol. 20(4), pages 866-891, December.
    7. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    9. Horowitz, Joel L. & Lee, Sokbae, 2017. "Nonparametric estimation and inference under shape restrictions," Journal of Econometrics, Elsevier, vol. 201(1), pages 108-126.
    10. Katja Maria Kaufmann & Yasemin Özdemir & Han Ye, 2022. "Spillover Effects of Old-Age Pension across Generations: Family Labor Supply and Child Outcomes," CESifo Working Paper Series 9813, CESifo.
    11. Gery Geenens & Thomas Cuddihy, 2018. "Non‐parametric evidence of second‐leg home advantage in European football," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1009-1031, October.
    12. Potrafke, Niklas & Roesel, Felix, 2020. "The urban–rural gap in healthcare infrastructure: does government ideology matter?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 54(3), pages 340-351.
    13. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    14. Matteo Gamalerio & Massimo Morelli & Margherita Negri, 2021. "The Political Economy of Open Borders: Theory and Evidence on the role of Electoral Rules," BAFFI CAREFIN Working Papers 21157, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    15. K. Cheung & Stephen Lee, 2010. "Bootstrap variance estimation for Nadaraya quantile estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 131-145, May.
    16. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    17. Chalak, Karim, 2024. "Nonparametric Gini-Frisch bounds," Journal of Econometrics, Elsevier, vol. 238(1).
    18. Nils Braakmann & Barbara Eberth, 2024. "Can unions impose costs on employers in education strikes? Evidence from pension disputes in UK universities," Papers 2401.05183, arXiv.org.
    19. Cattaneo, Matias D. & Jansson, Michael & Ma, Xinwei, 2024. "Local regression distribution estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    20. Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2020. "Simple Local Polynomial Density Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1449-1455, July.

    More about this item

    Keywords

    kernel density estimation; smoothed bootstrap; bias estimation; higher order kernel;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:1081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Makoto Watanabe (email available below). General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.