IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i2p417-427.html
   My bibliography  Save this article

Testing effect of a drug using multiple nested models for the dose–response

Author

Listed:
  • C. Baayen
  • P. Hougaard
  • C. B. Pipper

Abstract

No abstract is available for this item.

Suggested Citation

  • C. Baayen & P. Hougaard & C. B. Pipper, 2015. "Testing effect of a drug using multiple nested models for the dose–response," Biometrics, The International Biometric Society, vol. 71(2), pages 417-427, June.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:417-427
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12276
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Bretz & J. C. Pinheiro & M. Branson, 2005. "Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies," Biometrics, The International Biometric Society, vol. 61(3), pages 738-748, September.
    2. Christian Ritz & Ib M. Skovgaard, 2005. "Likelihood ratio tests in curved exponential families with nuisance parameters present only under the alternative," Biometrika, Biometrika Trust, vol. 92(3), pages 507-517, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georg Gutjahr & Björn Bornkamp, 2017. "Likelihood ratio tests for a dose-response effect using multiple nonlinear regression models," Biometrics, The International Biometric Society, vol. 73(1), pages 197-205, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathrin Möllenhoff & Frank Bretz & Holger Dette, 2020. "Equivalence of regression curves sharing common parameters," Biometrics, The International Biometric Society, vol. 76(2), pages 518-529, June.
    2. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    3. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.
    4. Qiqi Deng & Kun Wang & Xiaofei Bai & Naitee Ting, 2019. "A Cautionary Note When a Dose-Ranging Study is Used for Proving the Concept," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 127-140, April.
    5. Beibei Guo & Ying Yuan, 2023. "DROID: dose‐ranging approach to optimizing dose in oncology drug development," Biometrics, The International Biometric Society, vol. 79(4), pages 2907-2919, December.
    6. Liu, W. & Ah-Kine, P. & Bretz, F. & Hayter, A.J., 2013. "Exact simultaneous confidence intervals for a finite set of contrasts of three, four or five generally correlated normal means," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 141-148.
    7. Kathrin Möllenhoff & Kirsten Schorning & Franziska Kappenberg, 2023. "Identifying alert concentrations using a model‐based bootstrap approach," Biometrics, The International Biometric Society, vol. 79(3), pages 2076-2088, September.
    8. Miller, Frank & Dette, Holger & Guilbaud, Olivier, 2007. "Optimal designs for estimating the interesting part of a dose-effect curve," Technical Reports 2007,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Dette, Holger & Scheder, Regine, 2008. "A finite sample comparison of nonparametric estimates of the effective dose in quantal bioassay," Technical Reports 2008,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Jianan Peng & Chu‐In Charles Lee & Karelyn A. Davis & Weizhen Wang, 2008. "Stepwise Confidence Intervals for Monotone Dose–Response Studies," Biometrics, The International Biometric Society, vol. 64(3), pages 877-885, September.
    11. Nairanjana Dasgupta & Monte J. Shaffer, 2012. "Many-to-one comparison of nonlinear growth curves for Washington's Red Delicious apple," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1781-1795, April.
    12. Wei-Wen Hsu & David Todem & Kyungmann Kim, 2015. "Adjusted Supremum Score-Type Statistics for Evaluating Non-Standard Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 746-759, September.
    13. Qiqi Deng & Xiaofei Bai & Dacheng Liu & Dooti Roy & Zhiliang Ying & Dan‐Yu Lin, 2019. "Power and sample size for dose‐finding studies with survival endpoints under model uncertainty," Biometrics, The International Biometric Society, vol. 75(1), pages 308-314, March.
    14. Yu, Jun & Kong, Xiangshun & Ai, Mingyao & Tsui, Kwok Leung, 2018. "Optimal designs for dose–response models with linear effects of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 217-228.
    15. Dette, Holger & Bretz, Frank, 2007. "Optimal designs for dose finding studies," Technical Reports 2007,01, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Frank Schaarschmidt & Christian Ritz & Ludwig A. Hothorn, 2022. "The Tukey trend test: Multiplicity adjustment using multiple marginal models," Biometrics, The International Biometric Society, vol. 78(2), pages 789-797, June.
    17. Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
    18. Bornkamp, Björn & Pinheiro, José & Bretz, Frank, 2009. "MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i07).
    19. repec:jss:jstsof:29:i07 is not listed on IDEAS
    20. Georg Gutjahr & Björn Bornkamp, 2017. "Likelihood ratio tests for a dose-response effect using multiple nonlinear regression models," Biometrics, The International Biometric Society, vol. 73(1), pages 197-205, March.
    21. Wei‐Wen Hsu & David Todem & KyungMann Kim, 2016. "A sup‐score test for the cure fraction in mixture models for long‐term survivors," Biometrics, The International Biometric Society, vol. 72(4), pages 1348-1357, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:2:p:417-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.