Accelerated failure time modeling via nonparametric mixtures
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13556
Download full text from publisher
References listed on IDEAS
- Lynn M. Johnson & Robert L. Strawderman, 2009. "Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data," Biometrika, Biometrika Trust, vol. 96(3), pages 577-590.
- Ying Ding & Bin Nan, 2015. "Estimating Mean Survival Time: When is it Possible?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 397-413, June.
- Chiou, Sy Han & Kang, Sangwook & Yan, Jun, 2014. "Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i11).
- Xiang, Sijia & Yao, Weixin & Seo, Byungtae, 2016. "Semiparametric mixture: Continuous scale mixture approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 413-425.
- Sy Han Chiou & Sangwook Kang & Jun Yan, 2015. "Semiparametric Accelerated Failure Time Modeling for Clustered Failure Times From Stratified Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 621-629, June.
- Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
- B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Seo, Byungtae & Ha, Il Do, 2024. "Semiparametric accelerated failure time models under unspecified random effect distributions," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liya Fu & Zhuoran Yang & Yan Zhou & You-Gan Wang, 2021. "An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 679-709, October.
- Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
- Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
- Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
- Li, Haifen & Zhang, Jiajia & Tang, Yincai, 2012. "Induced smoothing for the semiparametric accelerated hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4312-4319.
- Chiou, Sy Han & Kang, Sangwook & Yan, Jun, 2014. "Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i11).
- Fu, Liya & Wang, You-Gan & Bai, Zhidong, 2010. "Rank regression for analysis of clustered data: A natural induced smoothing approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1036-1050, April.
- Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
- Zexi Cai & Tony Sit, 2023. "On interquantile smoothness of censored quantile regression with induced smoothing," Biometrics, The International Biometric Society, vol. 79(4), pages 3549-3563, December.
- Xue Yu & Yichuan Zhao, 2019. "Jackknife empirical likelihood inference for the accelerated failure time model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 269-288, March.
- Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
- Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
- Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
- Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
- You-Gan Wang & Yudong Zhao, 2008. "Weighted Rank Regression for Clustered Data Analysis," Biometrics, The International Biometric Society, vol. 64(1), pages 39-45, March.
- Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
- Víctor H. Lachos & Celso R. B. Cabral & Marcos O. Prates & Dipak K. Dey, 2019. "Flexible regression modeling for censored data based on mixtures of student-t distributions," Computational Statistics, Springer, vol. 34(1), pages 123-152, March.
- Kangning Wang & Wen Shan, 2021. "Copula and composite quantile regression-based estimating equations for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 441-455, June.
- Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
- Lea Kats & Malka Gorfine, 2023. "An accelerated failure time regression model for illness–death data: A frailty approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3066-3081, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:165-177. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.