IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i10p3696-3705.html
   My bibliography  Save this article

Quantile regression without the curse of unsmoothness

Author

Listed:
  • Wang, You-Gan
  • Shao, Quanxi
  • Zhu, Min

Abstract

We consider quantile regression models and investigate the induced smoothing method for obtaining the covariance matrix of the regression parameter estimates. We show that the difference between the smoothed and unsmoothed estimating functions in quantile regression is negligible. The detailed and simple computational algorithms for calculating the asymptotic covariance are provided. Intensive simulation studies indicate that the proposed method performs very well. We also illustrate the algorithm by analyzing the rainfall-runoff data from Murray Upland, Australia.

Suggested Citation

  • Wang, You-Gan & Shao, Quanxi & Zhu, Min, 2009. "Quantile regression without the curse of unsmoothness," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3696-3705, August.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3696-3705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00122-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He X. & Hu F., 2002. "Markov Chain Marginal Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 783-795, September.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    3. B. M. Brown & You-Gan Wang, 2005. "Standard errors and covariance matrices for smoothed rank estimators," Biometrika, Biometrika Trust, vol. 92(1), pages 149-158, March.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    7. Yvonne H. S. Ho & Stephen M. S. Lee, 2005. "Calibrated interpolated confidence intervals for population quantiles," Biometrika, Biometrika Trust, vol. 92(1), pages 234-241, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
    2. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    3. Ruosha Li & Yu Cheng & Jason P. Fine, 2014. "Quantile Association Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 230-242, March.
    4. Thompson, Paul & Cai, Yuzhi & Moyeed, Rana & Reeve, Dominic & Stander, Julian, 2010. "Bayesian nonparametric quantile regression using splines," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1138-1150, April.
    5. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    6. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    7. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    8. Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
    9. Fernández-Ponce, J.M. & Pellerey, F. & Rodríguez-Griñolo, M.R., 2011. "On a new NBUE property in multivariate sense: An application," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3283-3294, December.
    10. Ruosha Li & Xuelin Huang & Jorge Cortes, 2016. "Quantile residual life regression with longitudinal biomarker measurements for dynamic prediction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 755-773, November.
    11. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    12. Wu, Jinran & Wang, You-Gan & Tian, Yu-Chu & Burrage, Kevin & Cao, Taoyun, 2021. "Support vector regression with asymmetric loss for optimal electric load forecasting," Energy, Elsevier, vol. 223(C).
    13. Fu, Liya & Wang, You-Gan & Bai, Zhidong, 2010. "Rank regression for analysis of clustered data: A natural induced smoothing approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1036-1050, April.
    14. Zexi Cai & Tony Sit, 2023. "On interquantile smoothness of censored quantile regression with induced smoothing," Biometrics, The International Biometric Society, vol. 79(4), pages 3549-3563, December.
    15. Zhao Chen & Runze Li & Yaohua Wu, 2012. "Weighted quantile regression for AR model with infinite variance errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 715-731.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    2. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    3. Javier Alejo, 2013. "Relación de Kuznets en América Latina. Explorando más allá de la media condicional," Económica, Departamento de Economía, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 59, pages 3-55, January-D.
    4. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    5. Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
    6. Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
    7. Halkos, George, 2010. "Modelling biodiversity," MPRA Paper 39075, University Library of Munich, Germany.
    8. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    9. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    10. Krüger, Steffen & Rösch, Daniel, 2017. "Downturn LGD modeling using quantile regression," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 42-56.
    11. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    12. repec:cte:werepe:24120 is not listed on IDEAS
    13. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    14. repec:wyi:journl:002112 is not listed on IDEAS
    15. Fan, Rui & Lee, Ji Hyung, 2019. "Predictive quantile regressions under persistence and conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(1), pages 261-280.
    16. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    17. Ren, Xiaohang & Lu, Zudi & Cheng, Cheng & Shi, Yukun & Shen, Jian, 2019. "On dynamic linkages of the state natural gas markets in the USA: Evidence from an empirical spatio-temporal network quantile analysis," Energy Economics, Elsevier, vol. 80(C), pages 234-252.
    18. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.
    19. Yang, Lu & Tian, Shuairu & Yang, Wei & Xu, Mingli & Hamori, Shigeyuki, 2018. "Dependence structures between Chinese stock markets and the international financial market: Evidence from a wavelet-based quantile regression approach," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 116-137.
    20. Xu, Qifa & Niu, Xufeng & Jiang, Cuixia & Huang, Xue, 2015. "The Phillips curve in the US: A nonlinear quantile regression approach," Economic Modelling, Elsevier, vol. 49(C), pages 186-197.
    21. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    22. Kato Kengo, 2011. "A note on moment convergence of bootstrap M-estimators," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 51-61, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3696-3705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.