IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p621-629.html
   My bibliography  Save this article

Semiparametric Accelerated Failure Time Modeling for Clustered Failure Times From Stratified Sampling

Author

Listed:
  • Sy Han Chiou
  • Sangwook Kang
  • Jun Yan

Abstract

Clustered failure times often arise from studies with stratified sampling designs where it is desired to reduce both cost and sampling error. Semiparametric accelerated failure time (AFT) models have not been used as frequently as Cox relative risk models in such settings due to lack of efficient and reliable computing routines for inferences. The challenge roots in the nonsmoothness of the rank-based estimating functions, and for clustered data, the asymptotic properties of the estimator from the weighted version have not been available. The recently proposed induced smoothing approach, which provides fast and accurate rank-based inferences for AFT models, is generalized to incorporate weights to accommodate stratified sampling designs. The estimator from the induced smoothing weighted estimating equations are shown to be consistent and have the same asymptotic distribution as that from the nonsmooth version, which has not been developed before. The variance of the estimator is estimated by computationally efficient sandwich estimators aided by a multiplier bootstrap. The proposed method is assessed in extensive simulation studies where the estimators appear to provide valid and efficient inferences. A stratified case-cohort design with clustered times to tooth extraction in a dental study illustrates the usefulness of the method.

Suggested Citation

  • Sy Han Chiou & Sangwook Kang & Jun Yan, 2015. "Semiparametric Accelerated Failure Time Modeling for Clustered Failure Times From Stratified Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 621-629, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:621-629
    DOI: 10.1080/01621459.2014.917978
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.917978
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.917978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byungtae Seo & Sangwook Kang, 2023. "Accelerated failure time modeling via nonparametric mixtures," Biometrics, The International Biometric Society, vol. 79(1), pages 165-177, March.
    2. Liya Fu & Zhuoran Yang & Yan Zhou & You-Gan Wang, 2021. "An efficient Gehan-type estimation for the accelerated failure time model with clustered and censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 679-709, October.
    3. Haiming Zhou & Timothy Hanson & Jiajia Zhang, 2017. "Generalized accelerated failure time spatial frailty model for arbitrarily censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 495-515, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:621-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.