IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i2p487-498.html
   My bibliography  Save this article

A generalized robust allele‐based genetic association test

Author

Listed:
  • Lin Zhang
  • Lei Sun

Abstract

The allele‐based association test, comparing allele frequency difference between case and control groups, is locally most powerful. However, application of the classical allelic test is limited in practice, because the method is sensitive to the Hardy–Weinberg equilibrium (HWE) assumption, not applicable to continuous traits, and not easy to account for covariate effect or sample correlation. To develop a generalized robust allelic test, we propose a new allele‐based regression model with individual allele as the response variable. We show that the score test statistic derived from this robust and unifying regression framework contains a correction factor that explicitly adjusts for potential departure from HWE and encompasses the classical allelic test as a special case. When the trait of interest is continuous, the corresponding allelic test evaluates a weighted difference between individual‐level allele frequency estimate and sample estimate where the weight is proportional to an individual's trait value, and the test remains valid under Y‐dependent sampling. Finally, the proposed allele‐based method can analyze multiple (continuous or binary) phenotypes simultaneously and multiallelic genetic markers, while accounting for covariate effect, sample correlation, and population heterogeneity. To support our analytical findings, we provide empirical evidence from both simulation and application studies.

Suggested Citation

  • Lin Zhang & Lei Sun, 2022. "A generalized robust allele‐based genetic association test," Biometrics, The International Biometric Society, vol. 78(2), pages 487-498, June.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:487-498
    DOI: 10.1111/biom.13456
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13456
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeny Feng, 2014. "A generalized quasi-likelihood scoring approach for simultaneously testing the genetic association of multiple traits," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(3), pages 483-498, April.
    2. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    3. Harriet Corvol & Scott M. Blackman & Pierre-Yves Boëlle & Paul J. Gallins & Rhonda G. Pace & Jaclyn R. Stonebraker & Frank J. Accurso & Annick Clement & Joseph M. Collaco & Hong Dang & Anthony T. Dang, 2015. "Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    4. Elif F. Acar & Lei Sun, 2013. "A Generalized Kruskal–Wallis Test Incorporating Group Uncertainty with Application to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(2), pages 427-435, June.
    5. Andriy Derkach & Jerald F. Lawless & Lei Sun, 2015. "Score tests for association under response-dependent sampling designs for expensive covariates," Biometrika, Biometrika Trust, vol. 102(4), pages 988-994.
    6. David Soave & Lei Sun, 2017. "A generalized Levene's scale test for variance heterogeneity in the presence of sample correlation and group uncertainty," Biometrics, The International Biometric Society, vol. 73(3), pages 960-971, September.
    7. Jakris Eu-ahsunthornwattana & E Nancy Miller & Michaela Fakiola & Wellcome Trust Case Control Consortium 2 & Selma M B Jeronimo & Jenefer M Blackwell & Heather J Cordell, 2014. "Comparison of Methods to Account for Relatedness in Genome-Wide Association Studies with Family-Based Data," PLOS Genetics, Public Library of Science, vol. 10(7), pages 1-20, July.
    8. Baolin Wu & Weihua Guan, 2015. "Reader reaction on the generalized Kruskal–Wallis test for genetic association studies incorporating group uncertainty," Biometrics, The International Biometric Society, vol. 71(2), pages 556-557, June.
    9. Paul F O’Reilly & Clive J Hoggart & Yotsawat Pomyen & Federico C F Calboli & Paul Elliott & Marjo-Riitta Jarvelin & Lachlan J M Coin, 2012. "MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-1, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Di Scipio & Mohammad Khan & Shihong Mao & Michael Chong & Conor Judge & Nazia Pathan & Nicolas Perrot & Walter Nelson & Ricky Lali & Shuang Di & Robert Morton & Jeremy Petch & Guillaume Paré, 2023. "A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Kuan-Chieh Huang & Wei Sun & Ying Wu & Mengjie Chen & Karen L Mohlke & Leslie A Lange & Yun Li, 2014. "Association Studies with Imputed Variants Using Expectation-Maximization Likelihood-Ratio Tests," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    3. Heng Du & Lei Zhou & Zhen Liu & Yue Zhuo & Meilin Zhang & Qianqian Huang & Shiyu Lu & Kai Xing & Li Jiang & Jian-Feng Liu, 2024. "The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Jacob Joseph & Chang Liu & Qin Hui & Krishna Aragam & Zeyuan Wang & Brian Charest & Jennifer E. Huffman & Jacob M. Keaton & Todd L. Edwards & Serkalem Demissie & Luc Djousse & Juan P. Casas & J. Micha, 2022. "Genetic architecture of heart failure with preserved versus reduced ejection fraction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    7. Robert F. Hillary & Danni A. Gadd & Zhana Kuncheva & Tasos Mangelis & Tinchi Lin & Kyle Ferber & Helen McLaughlin & Heiko Runz & Riccardo E. Marioni & Christopher N. Foley & Benjamin B. Sun, 2024. "Systematic discovery of gene-environment interactions underlying the human plasma proteome in UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Ido Amit & Kristin Ardlie & Fabiana Arzuaga & Gordon Awandare & Gary Bader & Alexander Bernier & Piero Carninci & Stacey Donnelly & Roland Eils & Alistair R. R. Forrest & Henry T. Greely & Roderic Gui, 2024. "The commitment of the human cell atlas to humanity," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Gengjie Jia & Xue Zhong & Hae Kyung Im & Nathan Schoettler & Milton Pividori & D. Kyle Hogarth & Anne I. Sperling & Steven R. White & Edward T. Naureckas & Christopher S. Lyttle & Chikashi Terao & Yoi, 2022. "Discerning asthma endotypes through comorbidity mapping," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Lili Liu & Atlas Khan & Elena Sanchez-Rodriguez & Francesca Zanoni & Yifu Li & Nicholas Steers & Olivia Balderes & Junying Zhang & Priya Krithivasan & Robert A. LeDesma & Clara Fischman & Scott J. Heb, 2022. "Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Shahram Bahrami & Kaja Nordengen & Jaroslav Rokicki & Alexey A. Shadrin & Zillur Rahman & Olav B. Smeland & Piotr P. Jaholkowski & Nadine Parker & Pravesh Parekh & Kevin S. O’Connell & Torbjørn Elvsås, 2024. "The genetic landscape of basal ganglia and implications for common brain disorders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Kenichi Yamamoto & Kyuto Sonehara & Shinichi Namba & Takahiro Konuma & Hironori Masuko & Satoru Miyawaki & Yoichiro Kamatani & Nobuyuki Hizawa & Keiichi Ozono & Loic Yengo & Yukinori Okada, 2023. "Genetic footprints of assortative mating in the Japanese population," Nature Human Behaviour, Nature, vol. 7(1), pages 65-73, January.
    15. Hui Chen & Zeyang Wang & Lihai Gong & Qixuan Wang & Wenyan Chen & Jia Wang & Xuelian Ma & Ruofan Ding & Xing Li & Xudong Zou & Mireya Plass & Cheng Lian & Ting Ni & Gong-Hong Wei & Wei Li & Lin Deng &, 2024. "A distinct class of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide association study," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Marta Alcalde-Herraiz & JunQing Xie & Danielle Newby & Clara Prats & Dipender Gill & María Gordillo-Marañón & Daniel Prieto-Alhambra & Martí Català & Albert Prats-Uribe, 2024. "Effect of genetically predicted sclerostin on cardiovascular biomarkers, risk factors, and disease outcomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Kai Wang, 2014. "Testing Genetic Association by Regressing Genotype over Multiple Phenotypes," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    19. van den Berg, G.J.; & von Hinke, S.; & Wang, R.A.H.;, 2023. "Prenatal Sugar Consumption and Late-Life Human Capital and Health: Analyses Based on Postwar Rationing and Polygenic Indices," Health, Econometrics and Data Group (HEDG) Working Papers 23/11, HEDG, c/o Department of Economics, University of York.
    20. Elizabeth C. Goode & Laura Fachal & Nikolaos Panousis & Loukas Moutsianas & Rebecca E. McIntyre & Benjamin Yu Hang Bai & Norihito Kawasaki & Alexandra Wittmann & Tim Raine & Simon M. Rushbrook & Carl , 2024. "Fine-mapping and molecular characterisation of primary sclerosing cholangitis genetic risk loci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:487-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.