IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i2p634-648.html
   My bibliography  Save this article

A semiparametric Bayesian approach to population finding with time‐to‐event and toxicity data in a randomized clinical trial

Author

Listed:
  • Satoshi Morita
  • Peter Müller
  • Hiroyasu Abe

Abstract

A utility‐based Bayesian population finding (BaPoFi) method was proposed by Morita and Müller to analyze data from a randomized clinical trial with the aim of identifying good predictive baseline covariates for optimizing the target population for a future study. The approach casts the population finding process as a formal decision problem together with a flexible probability model using a random forest to define a regression mean function. BaPoFi is constructed to handle a single continuous or binary outcome variable. In this paper, we develop BaPoFi‐TTE as an extension of the earlier approach for clinically important cases of time‐to‐event (TTE) data with censoring, and also accounting for a toxicity outcome. We model the association of TTE data with baseline covariates using a semiparametric failure time model with a Pólya tree prior for an unknown error term and a random forest for a flexible regression mean function. We define a utility function that addresses a trade‐off between efficacy and toxicity as one of the important clinical considerations for population finding. We examine the operating characteristics of the proposed method in extensive simulation studies. For illustration, we apply the proposed method to data from a randomized oncology clinical trial. Concerns in a preliminary analysis of the same data based on a parametric model motivated the proposed more general approach.

Suggested Citation

  • Satoshi Morita & Peter Müller & Hiroyasu Abe, 2021. "A semiparametric Bayesian approach to population finding with time‐to‐event and toxicity data in a randomized clinical trial," Biometrics, The International Biometric Society, vol. 77(2), pages 634-648, June.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:634-648
    DOI: 10.1111/biom.13289
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13289
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick M. Schnell & Qi Tang & Walter W. Offen & Bradley P. Carlin, 2016. "A Bayesian credible subgroups approach to identifying patient subgroups with positive treatment effects," Biometrics, The International Biometric Society, vol. 72(4), pages 1026-1036, December.
    2. Stephen Walker & Bani K. Mallick, 1999. "A Bayesian Semiparametric Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 55(2), pages 477-483, June.
    3. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    4. Satoshi Morita & Peter Müller, 2017. "Bayesian population finding with biomarkers in a randomized clinical trial," Biometrics, The International Biometric Society, vol. 73(4), pages 1355-1365, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    2. Song Zhang & Peter Müller & Kim-Anh Do, 2010. "A Bayesian Semiparametric Survival Model with Longitudinal Markers," Biometrics, The International Biometric Society, vol. 66(2), pages 435-443, June.
    3. Haiming Zhou & Timothy Hanson & Jiajia Zhang, 2017. "Generalized accelerated failure time spatial frailty model for arbitrarily censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 495-515, July.
    4. Adam J. Branscum & Timothy E. Hanson, 2008. "Bayesian Nonparametric Meta‐Analysis Using Polya Tree Mixture Models," Biometrics, The International Biometric Society, vol. 64(3), pages 825-833, September.
    5. Ma, Zichen & Hanson, Timothy E., 2020. "Bayesian nonparametric test for independence between random vectors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    6. Li, Li & Hanson, Timothy E., 2014. "A Bayesian semiparametric regression model for reliability data using effective age," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 177-188.
    7. Jianchang Lin & Debajyoti Sinha & Stuart Lipsitz & Adriano Polpo, 2012. "Semiparametric Bayesian Survival Analysis using Models with Log-linear Median," Biometrics, The International Biometric Society, vol. 68(4), pages 1136-1145, December.
    8. Jianjun Zhang & Lei Yang & Xianyi Wu, 2019. "Polya tree priors and their estimation with multi-group data," Statistical Papers, Springer, vol. 60(3), pages 849-875, June.
    9. Adam Branscum & Timothy Hanson & Ian Gardner, 2008. "Bayesian non-parametric models for regional prevalence estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 567-582.
    10. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    11. Dai, Xianhua & Härdle, Wolfgang Karl & Yu, Keming, 2014. "Do maternal health problems influence child's worrying status? Evidence from British cohort study," SFB 649 Discussion Papers 2014-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    13. Shinya Sugawara, 2017. "Firm‐Driven Management of Longevity Risk: Analysis of Lump‐Sum Forward Payments in Japanese Nursing Homes," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(1), pages 169-204, February.
    14. Maria De Iorio & Wesley O. Johnson & Peter Müller & Gary L. Rosner, 2009. "Bayesian Nonparametric Nonproportional Hazards Survival Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 762-771, September.
    15. Zhuang, Haoxin & Diao, Liqun & Yi, Grace Y., 2023. "Polya tree Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    16. Meijuan Li & Cavan Reilly & Tim Hanson, 2010. "Association Tests for a Censored Quantitative Trait and Candidate Genes in Structured Populations with Multilevel Genetic Relatedness," Biometrics, The International Biometric Society, vol. 66(3), pages 925-933, September.
    17. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    18. Jiajia Zhang & Timothy Hanson & Haiming Zhou, 2019. "Bayes factors for choosing among six common survival models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 361-379, April.
    19. Zhang, Jianjun & Qiu, Chunjuan & Wu, Xianyi, 2018. "Bayesian ratemaking with common effects modeled by mixture of Polya tree processes," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 87-94.
    20. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:634-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.