IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1303-1318.html
   My bibliography  Save this article

Frailty modeling via the empirical Bayes–Hastings sampler

Author

Listed:
  • Levine, Richard A.
  • Fan, Juanjuan
  • Strickland, Pamela Ohman
  • Demirel, Shaban

Abstract

Studies of ocular disease and analyses of time to disease onset are complicated by the correlation expected between the two eyes from a single patient. We overcome these statistical modeling challenges through a nonparametric Bayesian frailty model. While this model suggests itself as a natural one for such complex data structures, model fitting routines become overwhelmingly complicated and computationally intensive given the nonparametric form assumed for the frailty distribution and baseline hazard function. We consider empirical Bayesian methods to alleviate these difficulties through a routine that iterates between frequentist, data-driven estimation of the cumulative baseline hazard and Markov chain Monte Carlo estimation of the frailty and regression coefficients. We show both in theory and through simulation that this approach yields consistent estimators of the parameters of interest. We then apply the method to the short-wave automated perimetry (SWAP) data set to study risk factors of glaucomatous visual field deficits.

Suggested Citation

  • Levine, Richard A. & Fan, Juanjuan & Strickland, Pamela Ohman & Demirel, Shaban, 2012. "Frailty modeling via the empirical Bayes–Hastings sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1303-1318.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1303-1318
    DOI: 10.1016/j.csda.2011.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311003239
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    2. Stephen G. Walker & Bani K. Mallick, 1997. "Hierarchical Generalized Linear Models and Frailty Models with Bayesian Nonparametric Mixing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 845-860.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Haoxin & Diao, Liqun & Yi, Grace Y., 2023. "Polya tree Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Ernesto San Martín & Alejandro Jara & Jean-Marie Rolin & Michel Mouchart, 2011. "On the Bayesian Nonparametric Generalization of IRT-Type Models," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 385-409, July.
    3. Jianjun Zhang & Lei Yang & Xianyi Wu, 2019. "Polya tree priors and their estimation with multi-group data," Statistical Papers, Springer, vol. 60(3), pages 849-875, June.
    4. Komárek, Arnost & Lesaffre, Emmanuel, 2008. "Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3441-3458, March.
    5. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    6. Kumar Prabhash & Vijay M Patil & Vanita Noronha & Amit Joshi & Atanu Bhattacharjee, 2016. "Bayesian Accelerated Failure Time And Its Application In Chemotherapy Drug Treatment Trial," Statistics in Transition New Series, Polish Statistical Association, vol. 17(4), pages 671-690, December.
    7. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2020. "Latent Causal Socioeconomic Health Index," Papers 2009.12217, arXiv.org, revised Oct 2023.
    8. Adam Branscum & Timothy Hanson & Ian Gardner, 2008. "Bayesian non-parametric models for regional prevalence estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 567-582.
    9. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    10. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    11. Chiara Gigliarano & Pietro Muliere, 2013. "Estimating the Lorenz curve and Gini index with right censored data: a Polya tree approach," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 105-122, September.
    12. Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
    13. Nalini Ravishanker & Dipak K. Dey, 2000. "Multivariate Survival Models with a Mixture of Positive Stable Frailties," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 293-308, September.
    14. Nieto-Barajas, Luis E. & Walker, Stephen G., 2007. "A Bayesian semi-parametric bivariate failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6102-6113, August.
    15. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    16. Geurt Jongbloed & Frank H. van der Meulen & Lixue Pang, 2022. "Bayesian nonparametric estimation in the current status continuous mark model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1329-1352, September.
    17. Shinya Sugawara, 2017. "Firm‐Driven Management of Longevity Risk: Analysis of Lump‐Sum Forward Payments in Japanese Nursing Homes," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(1), pages 169-204, February.
    18. Timothy Hanson & Mingan Yang, 2007. "Bayesian Semiparametric Proportional Odds Models," Biometrics, The International Biometric Society, vol. 63(1), pages 88-95, March.
    19. Li, Li & Hanson, Timothy E., 2014. "A Bayesian semiparametric regression model for reliability data using effective age," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 177-188.
    20. Satoshi Morita & Peter Müller & Hiroyasu Abe, 2021. "A semiparametric Bayesian approach to population finding with time‐to‐event and toxicity data in a randomized clinical trial," Biometrics, The International Biometric Society, vol. 77(2), pages 634-648, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1303-1318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.