IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v23y2017i3d10.1007_s10985-016-9361-4.html
   My bibliography  Save this article

Generalized accelerated failure time spatial frailty model for arbitrarily censored data

Author

Listed:
  • Haiming Zhou

    (Northern Illinois University)

  • Timothy Hanson

    (University of South Carolina)

  • Jiajia Zhang

    (University of South Carolina)

Abstract

Flexible incorporation of both geographical patterning and risk effects in cancer survival models is becoming increasingly important, due in part to the recent availability of large cancer registries. Most spatial survival models stochastically order survival curves from different subpopulations. However, it is common for survival curves from two subpopulations to cross in epidemiological cancer studies and thus interpretable standard survival models can not be used without some modification. Common fixes are the inclusion of time-varying regression effects in the proportional hazards model or fully nonparametric modeling, either of which destroys any easy interpretability from the fitted model. To address this issue, we develop a generalized accelerated failure time model which allows stratification on continuous or categorical covariates, as well as providing per-variable tests for whether stratification is necessary via novel approximate Bayes factors. The model is interpretable in terms of how median survival changes and is able to capture crossing survival curves in the presence of spatial correlation. A detailed Markov chain Monte Carlo algorithm is presented for posterior inference and a freely available function frailtyGAFT is provided to fit the model in the R package spBayesSurv. We apply our approach to a subset of the prostate cancer data gathered for Louisiana by the surveillance, epidemiology, and end results program of the National Cancer Institute.

Suggested Citation

  • Haiming Zhou & Timothy Hanson & Jiajia Zhang, 2017. "Generalized accelerated failure time spatial frailty model for arbitrarily censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 495-515, July.
  • Handle: RePEc:spr:lifeda:v:23:y:2017:i:3:d:10.1007_s10985-016-9361-4
    DOI: 10.1007/s10985-016-9361-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-016-9361-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-016-9361-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy E. Hanson & Athanasios Kottas & Adam J. Branscum, 2008. "Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non‐parametric approaches," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(2), pages 207-225, April.
    2. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    3. Jiajia Zhang & Andrew B. Lawson, 2011. "Bayesian parametric accelerated failure time spatial model and its application to prostate cancer," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 591-603, November.
    4. Koenker, Roger, 2008. "Censored Quantile Regression Redux," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i06).
    5. Yi Li & Louise Ryan, 2002. "Modeling Spatial Survival Data Using Semiparametric Frailty Models," Biometrics, The International Biometric Society, vol. 58(2), pages 287-297, June.
    6. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    7. Maria De Iorio & Wesley O. Johnson & Peter Müller & Gary L. Rosner, 2009. "Bayesian Nonparametric Nonproportional Hazards Survival Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 762-771, September.
    8. A. Jara & T. E. Hanson, 2011. "A class of mixtures of dependent tail-free processes," Biometrika, Biometrika Trust, vol. 98(3), pages 553-566.
    9. Hennerfeind, Andrea & Brezger, Andreas & Fahrmeir, Ludwig, 2006. "Geoadditive Survival Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1065-1075, September.
    10. Brent R. Logan & John P. Klein & Mei‐Jie Zhang, 2008. "Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation," Biometrics, The International Biometric Society, vol. 64(3), pages 733-740, September.
    11. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    12. Luping Zhao & Timothy E. Hanson & Bradley P. Carlin, 2009. "Mixtures of Polya trees for flexible spatial frailty survival modelling," Biometrika, Biometrika Trust, vol. 96(2), pages 263-276.
    13. Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
    14. Henderson R. & Shimakura S. & Gorst D., 2002. "Modeling Spatial Variation in Leukemia Survival Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 965-972, December.
    15. Stephen Walker & Bani K. Mallick, 1999. "A Bayesian Semiparametric Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 55(2), pages 477-483, June.
    16. Sy Han Chiou & Sangwook Kang & Jun Yan, 2015. "Semiparametric Accelerated Failure Time Modeling for Clustered Failure Times From Stratified Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 621-629, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiajia Zhang & Timothy Hanson & Haiming Zhou, 2019. "Bayes factors for choosing among six common survival models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 361-379, April.
    2. Piyali Basak & Antonio Linero & Debajyoti Sinha & Stuart Lipsitz, 2022. "Semiparametric analysis of clustered interval‐censored survival data using soft Bayesian additive regression trees (SBART)," Biometrics, The International Biometric Society, vol. 78(3), pages 880-893, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolter, James Lewis, 2016. "Kernel estimation of hazard functions when observations have dependent and common covariates," Journal of Econometrics, Elsevier, vol. 193(1), pages 1-16.
    2. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    3. James Wolter, 2015. "Kernel Estimation Of Hazard Functions When Observations Have Dependent and Common Covariates," Economics Series Working Papers 761, University of Oxford, Department of Economics.
    4. Jiajia Zhang & Andrew B. Lawson, 2011. "Bayesian parametric accelerated failure time spatial model and its application to prostate cancer," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 591-603, November.
    5. Li, Li & Hanson, Timothy E., 2014. "A Bayesian semiparametric regression model for reliability data using effective age," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 177-188.
    6. Jianchang Lin & Debajyoti Sinha & Stuart Lipsitz & Adriano Polpo, 2012. "Semiparametric Bayesian Survival Analysis using Models with Log-linear Median," Biometrics, The International Biometric Society, vol. 68(4), pages 1136-1145, December.
    7. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    8. Y. Hagar & M. Hayden & C. Wiedinmyer & V. Dukic, 2017. "Comparison of Models Analyzing a Small Number of Observed Meningitis Cases in Navrongo, Ghana," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 76-104, March.
    9. Carroll, Rachel & Lawson, Andrew B. & Jackson, Chandra L. & Zhao, Shanshan, 2017. "Assessment of spatial variation in breast cancer-specific mortality using Louisiana SEER data," Social Science & Medicine, Elsevier, vol. 193(C), pages 1-7.
    10. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    11. Chen, Kunzhi & Shen, Weining & Zhu, Weixuan, 2023. "Covariate dependent Beta-GOS process," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    12. Jiajia Zhang & Timothy Hanson & Haiming Zhou, 2019. "Bayes factors for choosing among six common survival models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 361-379, April.
    13. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    14. Akram Yazdani & Hojjat Zeraati & Mehdi Yaseri & Shahpar Haghighat & Ahmad Kaviani, 2022. "Laplace regression with clustered censored data," Computational Statistics, Springer, vol. 37(3), pages 1041-1068, July.
    15. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    16. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    17. Sugawara, Shinya, 2012. "A nonparametric Bayesian approach for counterfactual prediction with an application to the Japanese private nursing home market," MPRA Paper 42154, University Library of Munich, Germany.
    18. Akim Adekpedjou & Sophie Dabo‐Niang, 2021. "Semiparametric estimation with spatially correlated recurrent events," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1097-1126, December.
    19. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    20. Manish Shirgaokar, 2016. "Expanding cities and vehicle use in India: Differing impacts of built environment factors on scooter and car use in Mumbai," Urban Studies, Urban Studies Journal Limited, vol. 53(15), pages 3296-3316, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:23:y:2017:i:3:d:10.1007_s10985-016-9361-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.