IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1026-1036.html
   My bibliography  Save this article

A Bayesian credible subgroups approach to identifying patient subgroups with positive treatment effects

Author

Listed:
  • Patrick M. Schnell
  • Qi Tang
  • Walter W. Offen
  • Bradley P. Carlin

Abstract

Many new experimental treatments benefit only a subset of the population. Identifying the baseline covariate profiles of patients who benefit from such a treatment, rather than determining whether or not the treatment has a population‐level effect, can substantially lessen the risk in undertaking a clinical trial and expose fewer patients to treatments that do not benefit them. The standard analyses for identifying patient subgroups that benefit from an experimental treatment either do not account for multiplicity, or focus on testing for the presence of treatment–covariate interactions rather than the resulting individualized treatment effects. We propose a Bayesian credible subgroups method to identify two bounding subgroups for the benefiting subgroup: one for which it is likely that all members simultaneously have a treatment effect exceeding a specified threshold, and another for which it is likely that no members do. We examine frequentist properties of the credible subgroups method via simulations and illustrate the approach using data from an Alzheimer's disease treatment trial. We conclude with a discussion of the advantages and limitations of this approach to identifying patients for whom the treatment is beneficial.

Suggested Citation

  • Patrick M. Schnell & Qi Tang & Walter W. Offen & Bradley P. Carlin, 2016. "A Bayesian credible subgroups approach to identifying patient subgroups with positive treatment effects," Biometrics, The International Biometric Society, vol. 72(4), pages 1026-1036, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1026-1036
    DOI: 10.1111/biom.12522
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12522
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satoshi Morita & Peter Müller & Hiroyasu Abe, 2021. "A semiparametric Bayesian approach to population finding with time‐to‐event and toxicity data in a randomized clinical trial," Biometrics, The International Biometric Society, vol. 77(2), pages 634-648, June.
    2. Duy Ngo & Richard Baumgartner & Shahrul Mt-Isa & Dai Feng & Jie Chen & Patrick Schnell, 2020. "Bayesian credible subgroup identification for treatment effectiveness in time-to-event data," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Anne Musson & Damien Rousselière, 2020. "Exploring the effect of crisis on cooperatives: a Bayesian performance analysis of French craftsmen cooperatives," Applied Economics, Taylor & Francis Journals, vol. 52(25), pages 2657-2678, May.
    3. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
    4. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    5. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    6. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    8. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    9. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    10. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    11. Gary Koop, 2012. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
    12. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
    13. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    14. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    15. Bhattacharya, Anirban & Dunson, David B. & Pati, Debdeep & Pillai, Natesh S., 2016. "Sub-optimality of some continuous shrinkage priors," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3828-3842.
    16. R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
    17. Sweata Sen & Damitri Kundu & Kiranmoy Das, 2023. "Variable selection for categorical response: a comparative study," Computational Statistics, Springer, vol. 38(2), pages 809-826, June.
    18. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    19. Goodness C. Aye & Rangan Gupta, 2013. "Forecasting Real House Price of the U.S.: An Analysis Covering 1890 to 2012," Working Papers 201362, University of Pretoria, Department of Economics.
    20. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1026-1036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.