IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.12217.html
   My bibliography  Save this paper

Latent Causal Socioeconomic Health Index

Author

Listed:
  • Swen Kuh
  • Grace S. Chiu
  • Anton H. Westveld

Abstract

This research develops a model-based LAtent Causal Socioeconomic Health (LACSH) index at the national level. Motivated by the need for a holistic national well-being index, we build upon the latent health factor index (LHFI) approach that has been used to assess the unobservable ecological/ecosystem health. LHFI integratively models the relationship between metrics, latent health, and covariates that drive the notion of health. In this paper, the LHFI structure is integrated with spatial modeling and statistical causal modeling. Our efforts are focused on developing the integrated framework to facilitate the understanding of how an observational continuous variable might have causally affected a latent trait that exhibits spatial correlation. A novel visualization technique to evaluate covariate balance is also introduced for the case of a continuous policy (treatment) variable. Our resulting LACSH framework and visualization tool are illustrated through two global case studies on national socioeconomic health (latent trait), each with various metrics and covariates pertaining to different aspects of societal health, and the treatment variable being mandatory maternity leave days and government expenditure on healthcare, respectively. We validate our model by two simulation studies. All approaches are structured in a Bayesian hierarchical framework and results are obtained by Markov chain Monte Carlo techniques.

Suggested Citation

  • Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2020. "Latent Causal Socioeconomic Health Index," Papers 2009.12217, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2009.12217
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.12217
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keele, Luke J. & Titiunik, Rocío, 2015. "Geographic Boundaries as Regression Discontinuities," Political Analysis, Cambridge University Press, vol. 23(1), pages 127-155, January.
    2. Jeni Klugman & Francisco Rodríguez & Hyung-Jin Choi, 2011. "The HDI 2010: new controversies, old critiques," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(2), pages 249-288, June.
    3. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    4. Corwin M. Zigler & Krista Watts & Robert W. Yeh & Yun Wang & Brent A. Coull & Francesca Dominici, 2013. "Model Feedback in Bayesian Propensity Score Estimation," Biometrics, The International Biometric Society, vol. 69(1), pages 263-273, March.
    5. Grace S Chiu & Margaret A Wu & Lin Lu, 2013. "Model-Based Assessment of Estuary Ecosystem Health Using the Latent Health Factor Index, with Application to the Richibucto Estuary," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-12, June.
    6. Corwin Matthew Zigler, 2016. "The Central Role of Bayes’ Theorem for Joint Estimation of Causal Effects and Propensity Scores," The American Statistician, Taylor & Francis Journals, vol. 70(1), pages 47-54, February.
    7. David Kaplan & Jianshen Chen, 2012. "A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 581-609, July.
    8. Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," IZA Discussion Papers 3255, Institute of Labor Economics (IZA).
    9. John F. Helliwell & Haifang Huang, 2014. "New Measures Of The Costs Of Unemployment: Evidence From The Subjective Well-Being Of 3.3 Million Americans," Economic Inquiry, Western Economic Association International, vol. 52(4), pages 1485-1502, October.
    10. Auke Rijpma, 2016. "What can’t money buy? Wellbeing and GDP since 1820," Working Papers 0078, Utrecht University, Centre for Global Economic History.
    11. Shawn Treier & Simon Jackman, 2008. "Democracy as a Latent Variable," American Journal of Political Science, John Wiley & Sons, vol. 52(1), pages 201-217, January.
    12. McCandless Lawrence C & Douglas Ian J. & Evans Stephen J. & Smeeth Liam, 2010. "Cutting Feedback in Bayesian Regression Adjustment for the Propensity Score," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-24, March.
    13. Martin, Andrew D. & Quinn, Kevin M., 2002. "Dynamic Ideal Point Estimation via Markov Chain Monte Carlo for the U.S. Supreme Court, 1953–1999," Political Analysis, Cambridge University Press, vol. 10(2), pages 134-153, April.
    14. Yang, Lin, 2018. "Measuring well-being: a multidimensional index integrating subjective well-being and preferences," LSE Research Online Documents on Economics 87789, London School of Economics and Political Science, LSE Library.
    15. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    16. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    17. Lin Yang, 2018. "Measuring Well-being: A Multidimensional Index Integrating Subjective Well-being and Preferences," Journal of Human Development and Capabilities, Taylor & Francis Journals, vol. 19(4), pages 456-476, October.
    18. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    19. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    20. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    21. Jackman, Simon, 2001. "Multidimensional Analysis of Roll Call Data via Bayesian Simulation: Identification, Estimation, Inference, and Model Checking," Political Analysis, Cambridge University Press, vol. 9(3), pages 227-241, January.
    22. Sudipto Banerjee, 2005. "On Geodetic Distance Computations in Spatial Modeling," Biometrics, The International Biometric Society, vol. 61(2), pages 617-625, June.
    23. Jeffrey D. Sachs & Richard Layard & John F. Helliwell, 2018. "World Happiness Report 2018," Working Papers id:12761, eSocialSciences.
    24. Corwin Matthew Zigler & Francesca Dominici, 2014. "Uncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model-Averaged Causal Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 95-107, March.
    25. Horrace, William C., 2005. "Some results on the multivariate truncated normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 209-221, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2019. "Modeling National Latent Socioeconomic Health and Examination of Policy Effects via Causal Inference," Papers 1911.00512, arXiv.org.
    2. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    3. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    4. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    5. Ruth T. Chepchirchir & Ibrahim Macharia & Alice W. Murage & Charles A. O. Midega & Zeyaur R. Khan, 2017. "Impact assessment of push-pull pest management on incomes, productivity and poverty among smallholder households in Eastern Uganda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1359-1372, December.
    6. Kreif, N. & Grieve, R. & Díaz, I. & Harrison, D., 2014. "Health econometric evaluation of the effects of a continuous treatment: a machine learning approach," Health, Econometrics and Data Group (HEDG) Working Papers 14/19, HEDG, c/o Department of Economics, University of York.
    7. Zachary K. Collier & Walter L. Leite & Allison Karpyn, 2021. "Neural Networks to Estimate Generalized Propensity Scores for Continuous Treatment Doses," Evaluation Review, , vol. 45(1-2), pages 3-33, February.
    8. Rüdiger Mutz & Hans-Dieter Daniel, 2012. "The generalized propensity score methodology for estimating unbiased journal impact factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 377-390, August.
    9. Hilal Atasoy & Rajiv D. Banker & Paul A. Pavlou, 2016. "On the Longitudinal Effects of IT Use on Firm-Level Employment," Information Systems Research, INFORMS, vol. 27(1), pages 6-26, March.
    10. Ida D'Attoma & Silvia Pacei, 2018. "Evaluating the Effects of Product Innovation on the Performance of European Firms by Using the Generalised Propensity Score," German Economic Review, Verein für Socialpolitik, vol. 19(1), pages 94-112, February.
    11. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    12. Carina Steckenleiter & Michael Lechner & Tim Pawlowski & Ute Schüttoff, 2023. "Do local expenditures on sports facilities affect sports participation?," Economic Inquiry, Western Economic Association International, vol. 61(4), pages 1103-1128, October.
    13. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    14. Steckenleiter, Carina & Lechner, Michael & Pawlowski, Tim & Schüttoff, Ute, 2019. "Do local public expenditures on sports facilities affect sports participation in Germany?," Economics Working Paper Series 1905, University of St. Gallen, School of Economics and Political Science.
    15. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    16. repec:lic:licosd:29311 is not listed on IDEAS
    17. Emiliano Magrini & Pierluigi Montalbano & Silvia Nenci, 2013. "Are the EU trade preferences really effective? A Generalized Propensity Score evaluation of the Southern Mediterranean Countries' case in agriculture and fishery," Working Papers 2/13, Sapienza University of Rome, DISS.
    18. Jie Zhu & Blanca Gallego, 2021. "Continuous Treatment Recommendation with Deep Survival Dose Response Function," Papers 2108.10453, arXiv.org, revised Sep 2023.
    19. Guadalupe Serrano-Domingo & Francisco Requena-Silvente, 2013. "Examining the non-linear relationship between migration and trade," Working Papers 1310, Department of Applied Economics II, Universidad de Valencia.
    20. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    21. Magrini, Emiliano & Montalbano, Pierluigi & Nenci, Silvia & Salvatici, Luca, 2014. "Agricultural trade distortions during recent international price spikes: what implications for food security?," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182726, European Association of Agricultural Economists.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.12217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.