IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v49y2022i3p1329-1352.html
   My bibliography  Save this article

Bayesian nonparametric estimation in the current status continuous mark model

Author

Listed:
  • Geurt Jongbloed
  • Frank H. van der Meulen
  • Lixue Pang

Abstract

We consider the current status continuous mark model where, if an event takes place before an inspection time T a “continuous mark” variable is observed as well. A Bayesian nonparametric method is introduced for estimating the distribution function of the joint distribution of the event time (X) and mark variable (Y). We consider two histogram‐type priors on the density of (X,Y). Our main result shows that under appropriate conditions, the posterior distribution function contracts pointwisely at rate n/logn−ρ3(ρ+2) if the true density is ρ‐Hölder continuous. In addition to our theoretical results we provide efficient computational methods for drawing from the posterior relying on a noncentered parameterization and Crank–Nicolson updates. The performance of the proposed methods is illustrated in several numerical experiments.

Suggested Citation

  • Geurt Jongbloed & Frank H. van der Meulen & Lixue Pang, 2022. "Bayesian nonparametric estimation in the current status continuous mark model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1329-1352, September.
  • Handle: RePEc:bla:scjsta:v:49:y:2022:i:3:p:1329-1352
    DOI: 10.1111/sjos.12562
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12562
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marloes H. Maathuis & Jon A. Wellner, 2008. "Inconsistency of the MLE for the Joint Distribution of Interval‐Censored Survival Times and Continuous Marks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(1), pages 83-103, March.
    2. Shota Gugushvili & Frank van der Meulen & Moritz Schauer & Peter Spreij, 2018. "Nonparametric Bayesian volatility estimation," Papers 1801.09956, arXiv.org, revised Mar 2019.
    3. Ghosal,Subhashis & van der Vaart,Aad, 2017. "Fundamentals of Nonparametric Bayesian Inference," Cambridge Books, Cambridge University Press, number 9780521878265, January.
    4. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    5. Piet Groeneboom & Geurt Jongbloed & Birgit Witte, 2012. "A maximum smoothed likelihood estimator in the current status continuous mark model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 85-101.
    6. Michael G. Hudgens & Marloes H. Maathuis & Peter B. Gilbert, 2007. "Nonparametric Estimation of the Joint Distribution of a Survival Time Subject to Interval Censoring and a Continuous Mark Variable," Biometrics, The International Biometric Society, vol. 63(2), pages 372-380, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zichen & Hanson, Timothy E., 2020. "Bayesian nonparametric test for independence between random vectors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    2. Piet Groeneboom & Geurt Jongbloed & Birgit Witte, 2012. "A maximum smoothed likelihood estimator in the current status continuous mark model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 85-101.
    3. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    4. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    5. Adam Branscum & Timothy Hanson & Ian Gardner, 2008. "Bayesian non-parametric models for regional prevalence estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 567-582.
    6. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    7. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    8. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
    9. Reiß, Markus & Schmidt-Hieber, Johannes, 2020. "Posterior contraction rates for support boundary recovery," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6638-6656.
    10. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    11. Dmitry B. Rokhlin, 2021. "Relative utility bounds for empirically optimal portfolios," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 437-462, June.
    12. Suzanne Sniekers & Aad Vaart, 2020. "Adaptive Bayesian credible bands in regression with a Gaussian process prior," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 386-425, August.
    13. Shota Gugushvili & Frank van der Meulen & Moritz Schauer & Peter Spreij, 2018. "Nonparametric Bayesian volatility estimation," Papers 1801.09956, arXiv.org, revised Mar 2019.
    14. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    15. Shinya Sugawara, 2017. "Firm‐Driven Management of Longevity Risk: Analysis of Lump‐Sum Forward Payments in Japanese Nursing Homes," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(1), pages 169-204, February.
    16. Agustín G. Nogales, 2022. "On Consistency of the Bayes Estimator of the Density," Mathematics, MDPI, vol. 10(4), pages 1-6, February.
    17. Song Zhang & Peter Müller & Kim-Anh Do, 2010. "A Bayesian Semiparametric Survival Model with Longitudinal Markers," Biometrics, The International Biometric Society, vol. 66(2), pages 435-443, June.
    18. Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
    19. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    20. Zhuang, Haoxin & Diao, Liqun & Yi, Grace Y., 2023. "Polya tree Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:49:y:2022:i:3:p:1329-1352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.