IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v81y2019i3p459-487.html
   My bibliography  Save this article

Robust causal structure learning with some hidden variables

Author

Listed:
  • Benjamin Frot
  • Preetam Nandy
  • Marloes H. Maathuis

Abstract

We introduce a new method to estimate the Markov equivalence class of a directed acyclic graph (DAG) in the presence of hidden variables, in settings where the underlying DAG among the observed variables is sparse, and there are a few hidden variables that have a direct effect on many of the observed variables. Building on the so‐called low rank plus sparse framework, we suggest a two‐stage approach which first removes the effect of the hidden variables and then estimates the Markov equivalence class of the underlying DAG under the assumption that there are no remaining hidden variables. This approach is consistent in certain high dimensional regimes and performs favourably when compared with the state of the art, in terms of both graphical structure recovery and total causal effect estimation.

Suggested Citation

  • Benjamin Frot & Preetam Nandy & Marloes H. Maathuis, 2019. "Robust causal structure learning with some hidden variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 459-487, July.
  • Handle: RePEc:bla:jorssb:v:81:y:2019:i:3:p:459-487
    DOI: 10.1111/rssb.12315
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12315
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Castelletti & Guido Consonni, 2021. "Bayesian inference of causal effects from observational data in Gaussian graphical models," Biometrics, The International Biometric Society, vol. 77(1), pages 136-149, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:81:y:2019:i:3:p:459-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.