IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i5d10.1007_s10260-021-00579-1.html
   My bibliography  Save this article

Structural learning and estimation of joint causal effects among network-dependent variables

Author

Listed:
  • Federico Castelletti

    (Universita Cattolica del Sacro Cuore)

  • Alessandro Mascaro

    (Universita Cattolica del Sacro Cuore
    Università degli Studi di Milano-Bicocca)

Abstract

Bayesian networks in the form of Directed Acyclic Graphs (DAGs) represent an effective tool for modeling and inferring dependence relations among variables, a process known as structural learning. In addition, when equipped with the notion of intervention, a causal DAG model can be adopted to quantify the causal effect on a response due to a hypothetical intervention on some variable. Observational data cannot distinguish between DAGs encoding the same set of conditional independencies (Markov equivalent DAGs), which however can be different from a causal perspective. In addition, because causal effects depend on the underlying network structure, uncertainty around the DAG generating model crucially affects the causal estimation results. We propose a Bayesian methodology which combines structural learning of Gaussian DAG models and inference of causal effects as arising from simultaneous interventions on any given set of variables in the system. Our approach fully accounts for the uncertainty around both the network structure and causal relationships through a joint posterior distribution over DAGs, DAG parameters and then causal effects.

Suggested Citation

  • Federico Castelletti & Alessandro Mascaro, 2021. "Structural learning and estimation of joint causal effects among network-dependent variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1289-1314, December.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:5:d:10.1007_s10260-021-00579-1
    DOI: 10.1007/s10260-021-00579-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-021-00579-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-021-00579-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Judea Pearl, 2003. "Statistics and causal inference: A review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 281-345, December.
    2. Yang Ni & Francesco C. Stingo & Veerabhadran Baladandayuthapani, 2017. "Sparse Multi-Dimensional Graphical Models: A Unified Bayesian Framework," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 779-793, April.
    3. Ellis, Byron & Wong, Wing Hung, 2008. "Learning Causal Bayesian Network Structures From Experimental Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 778-789, June.
    4. Federico Castelletti & Guido Consonni, 2021. "Bayesian inference of causal effects from observational data in Gaussian graphical models," Biometrics, The International Biometric Society, vol. 77(1), pages 136-149, March.
    5. Federico Castelletti & Guido Consonni, 2020. "Discovering causal structures in Bayesian Gaussian directed acyclic graph models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1727-1745, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Castelletti & Guido Consonni & Luca Rocca, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 261-267, June.
    2. Wenjun Xie & Qingyuan Yu & Wen Fang & Xiaoge Zhang & Jinghua Geng & Jiayi Tang & Wenfei Jing & Miaomiao Liu & Zongwei Ma & Jianxun Yang & Jun Bi, 2024. "Data-driven approaches linking wastewater and source estimation hazardous waste for environmental management," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.
    4. Almudevar, Anthony, 2016. "An information theoretic approach to pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 107(C), pages 52-64.
    5. Fazia Abdat & Sylvie Leclercq & Xavier Cuny & Claire Tissot, 2014. "Extracting recurrent scenarios from narrative texts using a Bayesian network: Application to serious occupational accidents with movement disturbance," Post-Print hal-01578382, HAL.
    6. Steven M. Shugan, 2007. "—Causality, Unintended Consequences and Deducing Shared Causes," Marketing Science, INFORMS, vol. 26(6), pages 731-741, 11-12.
    7. Xiao Guo & Hai Zhang, 2020. "Sparse directed acyclic graphs incorporating the covariates," Statistical Papers, Springer, vol. 61(5), pages 2119-2148, October.
    8. Davide Altomare & Guido Consonni & Luca La Rocca, 2013. "Objective Bayesian Search of Gaussian Directed Acyclic Graphical Models for Ordered Variables with Non-Local Priors," Biometrics, The International Biometric Society, vol. 69(2), pages 478-487, June.
    9. Almudevar, Anthony & LaCombe, Jason, 2012. "On the choice of prior density for the Bayesian analysis of pedigree structure," Theoretical Population Biology, Elsevier, vol. 81(2), pages 131-143.
    10. Yan Zhou & Peter X.‐K. Song & Xiaoquan Wen, 2021. "Structural factor equation models for causal network construction via directed acyclic mixed graphs," Biometrics, The International Biometric Society, vol. 77(2), pages 573-586, June.
    11. Guilin Zhang & Fei Xie & Dan Wang, 2024. "Reliability assessment method for tank bottom plates based on hierarchical Bayesian corrosion growth model," Journal of Risk and Reliability, , vol. 238(1), pages 112-121, February.
    12. Elena Stanghellini & Eduwin Pakpahan, 2015. "Identification of causal effects in linear models: beyond instrumental variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 489-509, September.
    13. Yongjun Chen & Xiaojian Li & Jin Wang & Mei Liu & Chaoxun Cai & Yuefeng Shi, 2023. "Research on the Application of Fuzzy Bayesian Network in Risk Assessment of Catenary Construction," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
    14. Ballinger, Clint, 2011. "Why inferential statistics are inappropriate for development studies and how the same data can be better used," MPRA Paper 29780, University Library of Munich, Germany.
    15. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    16. Sang Wan Lee & John P O’Doherty & Shinsuke Shimojo, 2015. "Neural Computations Mediating One-Shot Learning in the Human Brain," PLOS Biology, Public Library of Science, vol. 13(4), pages 1-36, April.
    17. Zhang, Hongmei & Huang, Xianzheng & Han, Shengtong & Rezwan, Faisal I. & Karmaus, Wilfried & Arshad, Hasan & Holloway, John W., 2021. "Gaussian Bayesian network comparisons with graph ordering unknown," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    18. Liang, Faming & Zhang, Jian, 2009. "Learning Bayesian networks for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 865-876, February.
    19. Huang, Xianzheng & Zhang, Hongmei, 2021. "Tests for differential Gaussian Bayesian networks based on quadratic inference functions," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    20. Víctor Casero-Alonso & Jesús López-Fidalgo, 2015. "Optimal designs subject to cost constraints in simultaneous equations models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 701-713, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:5:d:10.1007_s10260-021-00579-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.