IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i3p752-775.html
   My bibliography  Save this article

Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures

Author

Listed:
  • Federico Castelletti

Abstract

During the last years, graphical models have become a popular tool to represent dependencies among variables in many scientific areas. Typically, the objective is to discover dependence relationships that can be represented through a directed acyclic graph (DAG). The set of all conditional independencies encoded by a DAG determines its Markov property. In general, DAGs encoding the same conditional independencies are not distinguishable from observational data and can be collected into equivalence classes, each one represented by a chain graph called essential graph (EG). However, both the DAG and EG space grow super exponentially in the number of variables, and so, graph structural learning requires the adoption of Markov chain Monte Carlo (MCMC) techniques. In this paper, we review some recent results on Bayesian model selection of Gaussian DAG models under a unified framework. These results are based on closed‐form expressions for the marginal likelihood of a DAG and EG structure, which is obtained from a few suitable assumptions on the prior for model parameters. We then introduce a general MCMC scheme that can be adopted both for model selection of DAGs and EGs together with a couple of applications on real data sets.

Suggested Citation

  • Federico Castelletti, 2020. "Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures," International Statistical Review, International Statistical Institute, vol. 88(3), pages 752-775, December.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:752-775
    DOI: 10.1111/insr.12379
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12379
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Federico Castelletti & Guido Consonni, 2020. "Discovering causal structures in Bayesian Gaussian directed acyclic graph models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1727-1745, October.
    2. Jack Kuipers & Giusi Moffa, 2017. "Partition MCMC for Inference on Acyclic Digraphs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 282-299, January.
    3. Alberto Roverato, 2002. "Hyper Inverse Wishart Distribution for Non‐decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 391-411, September.
    4. Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
    5. Guido Consonni & Luca La Rocca, 2012. "Objective Bayes Factors for Gaussian Directed Acyclic Graphical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 743-756, December.
    6. Alberto Roverato, 2005. "A Unified Approach to the Characterization of Equivalence Classes of DAGs, Chain Graphs with no Flags and Chain Graphs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 295-312, June.
    7. Anindya Bhadra & Bani K. Mallick, 2013. "Joint High-Dimensional Bayesian Variable and Covariance Selection with an Application to eQTL Analysis," Biometrics, The International Biometric Society, vol. 69(2), pages 447-457, June.
    8. J. Peters & P. Bühlmann, 2014. "Identifiability of Gaussian structural equation models with equal error variances," Biometrika, Biometrika Trust, vol. 101(1), pages 219-228.
    9. Steen A. Andersson & David Madigan & Michael D. Perlman, 2001. "Alternative Markov Properties for Chain Graphs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 33-85, March.
    10. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castelletti, Federico & Peluso, Stefano, 2021. "Equivalence class selection of categorical graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    2. Guilin Zhang & Fei Xie & Dan Wang, 2024. "Reliability assessment method for tank bottom plates based on hierarchical Bayesian corrosion growth model," Journal of Risk and Reliability, , vol. 238(1), pages 112-121, February.
    3. Federico Castelletti & Guido Consonni & Luca Rocca, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 261-267, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castelletti, Federico & Peluso, Stefano, 2021. "Equivalence class selection of categorical graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    2. Nikolaos Petrakis & Stefano Peluso & Dimitris Fouskakis & Guido Consonni, 2020. "Objective methods for graphical structural learning," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 420-438, August.
    3. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
    5. Federico Castelletti & Guido Consonni & Luca Rocca, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 261-267, June.
    6. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    7. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    8. Nanny Wermuth & Kayvan Sadeghi, 2012. "Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 215-252, June.
    9. Federico Castelletti & Guido Consonni, 2021. "Bayesian inference of causal effects from observational data in Gaussian graphical models," Biometrics, The International Biometric Society, vol. 77(1), pages 136-149, March.
    10. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    11. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    12. Zhang, Hongmei & Huang, Xianzheng & Han, Shengtong & Rezwan, Faisal I. & Karmaus, Wilfried & Arshad, Hasan & Holloway, John W., 2021. "Gaussian Bayesian network comparisons with graph ordering unknown," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    13. Marco Molinari & Andrea Cremaschi & Maria De Iorio & Nishi Chaturvedi & Alun D. Hughes & Therese Tillin, 2022. "Bayesian nonparametric modelling of multiple graphs with an application to ethnic metabolic differences," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1181-1204, November.
    14. Junghi Kim & Kim‐Anh Do & Min Jin Ha & Christine B. Peterson, 2019. "Bayesian inference of hub nodes across multiple networks," Biometrics, The International Biometric Society, vol. 75(1), pages 172-182, March.
    15. Beatrice Franzolini & Alexandros Beskos & Maria De Iorio & Warrick Poklewski Koziell & Karolina Grzeszkiewicz, 2022. "Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market," Papers 2208.00952, arXiv.org, revised May 2023.
    16. Cao Xuan & Ding Lili & Mersha Tesfaye B., 2020. "Joint variable selection and network modeling for detecting eQTLs," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(1), pages 1-15, February.
    17. Leonardo Bottolo & Marco Banterle & Sylvia Richardson & Mika Ala‐Korpela & Marjo‐Riitta Järvelin & Alex Lewin, 2021. "A computationally efficient Bayesian seemingly unrelated regressions model for high‐dimensional quantitative trait loci discovery," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 886-908, August.
    18. Elin Shaddox & Francesco C. Stingo & Christine B. Peterson & Sean Jacobson & Charmion Cruickshank-Quinn & Katerina Kechris & Russell Bowler & Marina Vannucci, 2018. "A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 59-85, April.
    19. Federico Castelletti & Guido Consonni, 2020. "Discovering causal structures in Bayesian Gaussian directed acyclic graph models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1727-1745, October.
    20. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:3:p:752-775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.