IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i4p802-811.html
   My bibliography  Save this article

Hierarchical functional data with mixed continuous and binary measurements

Author

Listed:
  • Haocheng Li
  • John Staudenmayer
  • Raymond J. Carroll

Abstract

No abstract is available for this item.

Suggested Citation

  • Haocheng Li & John Staudenmayer & Raymond J. Carroll, 2014. "Hierarchical functional data with mixed continuous and binary measurements," Biometrics, The International Biometric Society, vol. 70(4), pages 802-811, December.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:802-811
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12211
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    2. Lan Zhou & Jianhua Z. Huang & Raymond J. Carroll, 2008. "Joint modelling of paired sparse functional data using principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 601-619.
    3. Zhou, Lan & Huang, Jianhua Z. & Martinez, Josue G. & Maity, Arnab & Baladandayuthapani, Veerabhadran & Carroll, Raymond J., 2010. "Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 390-400.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Bai & Yifei Sun & Jennifer A. Schrack & Ciprian M. Crainiceanu & Mei†Cheng Wang, 2018. "A two†stage model for wearable device data," Biometrics, The International Biometric Society, vol. 74(2), pages 744-752, June.
    2. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Peijun Sang & Liangliang Wang & Jiguo Cao, 2017. "Parametric functional principal component analysis," Biometrics, The International Biometric Society, vol. 73(3), pages 802-810, September.
    4. Yukun Zhang & Haocheng Li & Sarah Kozey Keadle & Charles E. Matthews & Raymond J. Carroll, 2019. "A Review of Statistical Analyses on Physical Activity Data Collected from Accelerometers," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 465-476, July.
    5. Jiguo Cao & Kunlaya Soiaporn & Raymond J. Carroll & David Ruppert, 2019. "Modeling and Prediction of Multiple Correlated Functional Outcomes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 112-129, March.
    6. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.
    3. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    4. Wei, Jiawei & Zhou, Lan, 2010. "Model selection using modified AIC and BIC in joint modeling of paired functional data," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1918-1924, December.
    5. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    6. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    7. repec:hum:wpaper:sfb649dp2013-001 is not listed on IDEAS
    8. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    9. Yuan Wang & Jianhua Hu & Kim-Anh Do & Brian P. Hobbs, 2019. "An Efficient Nonparametric Estimate for Spatially Correlated Functional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 162-183, April.
    10. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    11. Huaihou Chen & Philip T. Reiss & Thaddeus Tarpey, 2014. "Optimally weighted L-super-2 distance for functional data," Biometrics, The International Biometric Society, vol. 70(3), pages 516-525, September.
    12. repec:wyi:journl:002174 is not listed on IDEAS
    13. Ana-Maria Staicu & Ciprian M. Crainiceanu & Daniel S. Reich & David Ruppert, 2012. "Modeling Functional Data with Spatially Heterogeneous Shape Characteristics," Biometrics, The International Biometric Society, vol. 68(2), pages 331-343, June.
    14. Sang, Peijun & Lockhart, Richard A. & Cao, Jiguo, 2018. "Sparse estimation for functional semiparametric additive models," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 105-118.
    15. Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
    16. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    17. Luo Xiao & Yingxing Li & David Ruppert, 2013. "Fast bivariate P-splines: the sandwich smoother," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 577-599, June.
    18. Guo, Mengmeng & Zhou, Lhan & Huang, Jianhua Z. & Härdle, Wolfgang Karl, 2013. "Functional data analysis of generalized quantile regressions," SFB 649 Discussion Papers 2013-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    20. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    21. Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
    22. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:802-811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.