IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1246-1254.html
   My bibliography  Save this article

Bayesian population size estimation using Dirichlet process mixtures

Author

Listed:
  • Daniel Manrique‐Vallier

Abstract

We introduce a new Bayesian nonparametric method for estimating the size of a closed population from multiple‐recapture data. Our method, based on Dirichlet process mixtures, can accommodate complex patterns of heterogeneity of capture, and can transparently modulate its complexity without a separate model selection step. Additionally, it can handle the massively sparse contingency tables generated by large number of recaptures with moderate sample sizes. We develop an efficient and scalable MCMC algorithm for estimation. We apply our method to simulated data, and to two examples from the literature of estimation of casualties in armed conflicts.

Suggested Citation

  • Daniel Manrique‐Vallier, 2016. "Bayesian population size estimation using Dirichlet process mixtures," Biometrics, The International Biometric Society, vol. 72(4), pages 1246-1254, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1246-1254
    DOI: 10.1111/biom.12502
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12502
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. E. Fienberg & M. S. Johnson & B. W. Junker, 1999. "Classical multilevel and Bayesian approaches to population size estimation using multiple lists," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(3), pages 383-405.
    2. Baillargeon, Sophie & Rivest, Louis-Paul, 2007. "Rcapture: Loglinear Models for Capture-Recapture in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i05).
    3. Stephen Fienberg & Daniel Manrique-Vallier, 2009. "Integrated methodology for multiple systems estimation and record linkage using a missing data formulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(1), pages 49-60, March.
    4. Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
    5. Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
    6. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    7. Shira Mitchell & Al Ozonoff & Alan M. Zaslavsky & Bethany Hedt-Gauthier & Kristian Lum & Brent A. Coull, 2013. "A Comparison of Marginal and Conditional Models for Capture–Recapture Data with Application to Human Rights Violations Data," Biometrics, The International Biometric Society, vol. 69(4), pages 1022-1032, December.
    8. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    9. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Manrique‐Vallier & Jingchen Hu, 2018. "Bayesian non‐parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 635-647, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    2. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    3. Olivier Binette & Rebecca C. Steorts, 2022. "On the reliability of multiple systems estimation for the quantification of modern slavery," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 640-676, April.
    4. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    5. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    6. Fienberg Stephen E., 2015. "Discussion," Journal of Official Statistics, Sciendo, vol. 31(3), pages 527-535, September.
    7. Robert M. Dorazio & J. Andrew Royle, 2005. "Rejoinder to "The Performance of Mixture Models in Heterogeneous Closed Population Capture-Recapture"," Biometrics, The International Biometric Society, vol. 61(3), pages 874-876, September.
    8. Jared S. Murray & Jerome P. Reiter, 2016. "Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1466-1479, October.
    9. Daniel Manrique‐Vallier & Jingchen Hu, 2018. "Bayesian non‐parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 635-647, June.
    10. Humera Razzak & Christian Heumann, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 33-58, December.
    11. R. King & S. P. Brooks, 2008. "On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty," Biometrics, The International Biometric Society, vol. 64(3), pages 816-824, September.
    12. Chang Xuan Mao & Ruochen Huang & Sijia Zhang, 2017. "Petersen estimator, Chapman adjustment, list effects, and heterogeneity," Biometrics, The International Biometric Society, vol. 73(1), pages 167-173, March.
    13. Hang J. Kim & Jörg Drechsler & Katherine J. Thompson, 2021. "Synthetic microdata for establishment surveys under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 255-281, January.
    14. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    15. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
    16. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    17. Tsuyoshi Kunihama & David B. Dunson, 2013. "Bayesian Modeling of Temporal Dependence in Large Sparse Contingency Tables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1324-1338, December.
    18. Hiroyuki Kasahara & Katsumi Shimotsu, 2014. "Non-parametric identification and estimation of the number of components in multivariate mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 97-111, January.
    19. Planas Christophe & Rossi Alessandro, 2024. "The slice sampler and centrally symmetric distributions," Monte Carlo Methods and Applications, De Gruyter, vol. 30(3), pages 299-313.
    20. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1246-1254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.