IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i3p721-730.html
   My bibliography  Save this article

Mixture regression models for closed population capture–recapture data

Author

Listed:
  • Fodé Tounkara
  • Louis‐Paul Rivest

Abstract

In capture–recapture studies, the use of individual covariates has been recommended to get stable population estimates. However, some residual heterogeneity might still exist and ignoring such heterogeneity could lead to underestimating the population size (N). In this work, we explore two new models with capture probabilities depending on both covariates and unobserved random effects, to estimate the size of a population. Inference techniques including Horvitz–Thompson estimate and confidence intervals for the population size, are derived. The selection of a particular model is carried out using the Akaike information criterion (AIC). First, we extend the random effect model of Darroch et al. (1993, Journal of American Statistical Association 88, 1137–1148) to handle unit level covariates and discuss its limitations. The second approach is a generalization of the traditional zero‐truncated binomial model that includes a random effect to account for an unobserved heterogeneity. This approach provides useful tools for inference about N, since key quantities such as moments, likelihood functions and estimates of N and their standard errors have closed form expressions. Several models for the unobserved heterogeneity are available and the marginal capture probability is expressed using the Logit and the complementary Log–Log link functions. The sensitivity of the inference to the specification of a model is also investigated through simulations. A numerical example is presented. We compare the performance of the proposed estimator with that obtained under model Mh of Huggins (1989 Biometrika 76, 130–140).

Suggested Citation

  • Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:3:p:721-730
    DOI: 10.1111/biom.12325
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12325
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Dorazio & J. Andrew Royle, 2003. "Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals," Biometrics, The International Biometric Society, vol. 59(2), pages 351-364, June.
    2. Huggins, Richard, 2001. "A note on the difficulties associated with the analysis of capture-recapture experiments with heterogeneous capture probabilities," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 147-152, September.
    3. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    4. Shirley Pledger, 2000. "Unified Maximum Likelihood Estimates for Closed Capture–Recapture Models Using Mixtures," Biometrics, The International Biometric Society, vol. 56(2), pages 434-442, June.
    5. Brent A. Coull & Alan Agresti, 1999. "The Use of Mixed Logit Models to Reflect Heterogeneity in Capture-Recapture Studies," Biometrics, The International Biometric Society, vol. 55(1), pages 294-301, March.
    6. Stoklosa, Jakub & Huggins, Richard M., 2012. "A robust P-spline approach to closed population capture–recapture models with time dependence and heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 408-417.
    7. Wen-Han Hwang & Richard Huggins, 2005. "An examination of the effect of heterogeneity on the estimation of population size using capture-recapture data," Biometrika, Biometrika Trust, vol. 92(1), pages 229-233, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Manrique‐Vallier, 2016. "Bayesian population size estimation using Dirichlet process mixtures," Biometrics, The International Biometric Society, vol. 72(4), pages 1246-1254, December.
    2. Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    2. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    3. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    4. Hannah Worthington & Rachel S. McCrea & Ruth King & Richard A. Griffiths, 2019. "Estimation of Population Size When Capture Probability Depends on Individual States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 154-172, March.
    5. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    6. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    7. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    8. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    9. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    10. Chang Xuan Mao & Robert K. Colwell & Jing Chang, 2005. "Estimating the Species Accumulation Curve Using Mixtures," Biometrics, The International Biometric Society, vol. 61(2), pages 433-441, June.
    11. Robert M. Dorazio & J. Andrew Royle, 2005. "Rejoinder to "The Performance of Mixture Models in Heterogeneous Closed Population Capture-Recapture"," Biometrics, The International Biometric Society, vol. 61(3), pages 874-876, September.
    12. Shirley Pledger, 2005. "The Performance of Mixture Models in Heterogeneous Closed Population Capture–Recapture," Biometrics, The International Biometric Society, vol. 61(3), pages 868-873, September.
    13. R. King & S. P. Brooks, 2008. "On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty," Biometrics, The International Biometric Society, vol. 64(3), pages 816-824, September.
    14. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    15. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    16. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    17. Chang Xuan Mao & Cuiying Yang & Yitong Yang & Wei Zhuang, 2017. "Estimating population sizes with the Rasch model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 705-716, June.
    18. R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.
    19. Félix-Medina Martín Humberto, 2021. "Combining Cluster Sampling and Link-Tracing Sampling to Estimate Totals and Means of Hidden Populations in Presence of Heterogeneous Probabilities of Links," Journal of Official Statistics, Sciendo, vol. 37(4), pages 865-905, December.
    20. Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2010. "Open Capture–Recapture Models with Heterogeneity: II. Jolly–Seber Model," Biometrics, The International Biometric Society, vol. 66(3), pages 883-890, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:3:p:721-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.