IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v65y2013icp80-97.html
   My bibliography  Save this article

Robust tests in generalized linear models with missing responses

Author

Listed:
  • Bianco, Ana M.
  • Boente, Graciela
  • Rodrigues, Isabel M.

Abstract

In many situations, data follow a generalized linear model in which the mean of the responses is modelled, through a link function, linearly on the covariates. Robust estimators for the regression parameter in order to build test statistics for this parameter, when missing data occur in the responses, are considered. The asymptotic behaviour of the robust estimators for the regression parameter is obtained, under the null hypothesis and under contiguous alternatives. This allows us to derive the asymptotic distribution of the robust Wald-type test statistics constructed from the proposed estimators. The influence function of the test statistics is also studied. A simulation study allows us to compare the behaviour of the classical and robust tests, under different contamination schemes. Applications to real data sets enable to investigate the sensitivity of the p-value to the missing scheme and to the presence of outliers.

Suggested Citation

  • Bianco, Ana M. & Boente, Graciela & Rodrigues, Isabel M., 2013. "Robust tests in generalized linear models with missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 80-97.
  • Handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:80-97
    DOI: 10.1016/j.csda.2012.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002071
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Adimari & L. Ventura, 2002. "Quasi-Profile Log Likelihoods for Unbiased Estimating Functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 235-244, June.
    2. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    3. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    4. Cantoni, Eva & Ronchetti, Elvezio, 2006. "A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures," Journal of Health Economics, Elsevier, vol. 25(2), pages 198-213, March.
    5. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    6. Bianco, Ana & Boente, Graciela, 2002. "On the asymptotic behavior of one-step estimates in heteroscedastic regression models," Statistics & Probability Letters, Elsevier, vol. 60(1), pages 33-47, November.
    7. Croux, Christophe & Haesbroeck, Gentiane, 2003. "Implementing the Bianco and Yohai estimator for logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 273-295, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayanendranath Basu & Abhik Ghosh & Abhijit Mandal & Nirian Martin & Leandro Pardo, 2021. "Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 973-1005, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana M. Bianco & Graciela Boente & Gonzalo Chebi, 2022. "Penalized robust estimators in sparse logistic regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 563-594, September.
    2. Bianco, Ana M. & Boente, Graciela & Rodrigues, Isabel M., 2013. "Resistant estimators in Poisson and Gamma models with missing responses and an application to outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 209-226.
    3. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    4. Ana Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2011. "Asymptotic behavior of robust estimators in partially linear models with missing responses: the effect of estimating the missing probability on the simplified marginal estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 524-548, November.
    5. Bellio, Ruggero, 2007. "Algorithms for bounded-influence estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2531-2541, February.
    6. Ayanendranath Basu & Abhik Ghosh & Abhijit Mandal & Nirian Martin & Leandro Pardo, 2021. "Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 973-1005, September.
    7. Hubert, Mia & Dierckx, Goedele & Vanpaemel, Dina, 2013. "Detecting influential data points for the Hill estimator in Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 13-28.
    8. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    9. Miron, Julien & Poilane, Benjamin & Cantoni, Eva, 2022. "Robust polytomous logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    10. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    11. Boente, Graciela & Rodriguez, Daniela, 2010. "Robust inference in generalized partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2942-2966, December.
    12. William H. Aeberhard & Eva Cantoni & Stephane Heritier, 2014. "Robust inference in the negative binomial regression model with an application to falls data," Biometrics, The International Biometric Society, vol. 70(4), pages 920-931, December.
    13. Bravo, Francesco, 2015. "Semiparametric estimation with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 329-346.
    14. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    15. Bianco, Ana M. & Boente, Graciela & Sombielle, Susana, 2011. "Robust estimation for nonparametric generalized regression," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1986-1994.
    16. Elena Castilla & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2021. "Robust semiparametric inference for polytomous logistic regression with complex survey design," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 701-734, September.
    17. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    18. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    19. Courbage, Christophe & Rey, Béatrice, 2012. "Priority setting in health care and higher order degree change in risk," Journal of Health Economics, Elsevier, vol. 31(3), pages 484-489.
    20. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:65:y:2013:i:c:p:80-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.