IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i2d10.1007_s00180-022-01293-6.html
   My bibliography  Save this article

Robust estimation for the one-parameter exponential family integer-valued GARCH(1,1) models based on a modified Tukey’s biweight function

Author

Listed:
  • Lanyu Xiong

    (Anhui University)

  • Fukang Zhu

    (Jilin University)

Abstract

In this paper, we study a robust estimation method for observation-driven integer-valued time series models whose conditional distribution belongs to the one-parameter exponential family. Maximum likelihood estimator (MLE) is commonly used to estimate parameters, but it is highly affected by outliers. We resort to the Mallows’ quasi-likelihood estimator based on a modified Tukey’s biweight function as a robust estimator and establish its existence, uniqueness, consistency and asymptotic normality under some regularity conditions. Compared with MLE, simulation results illustrate the better performance of the new estimator. An application is performed on data for two real data sets, and a comparison with other existing robust estimators is also given.

Suggested Citation

  • Lanyu Xiong & Fukang Zhu, 2024. "Robust estimation for the one-parameter exponential family integer-valued GARCH(1,1) models based on a modified Tukey’s biweight function," Computational Statistics, Springer, vol. 39(2), pages 495-522, April.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01293-6
    DOI: 10.1007/s00180-022-01293-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01293-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01293-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01293-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.