IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v4y2021i1p8-107d492885.html
   My bibliography  Save this article

Improving the Efficiency of Robust Estimators for the Generalized Linear Model

Author

Listed:
  • Alfio Marazzi

    (Nice Computing SA, 1052 Le Mont-sur-Lausanne, Switzerland
    Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland)

Abstract

The distance constrained maximum likelihood procedure (DCML) optimally combines a robust estimator with the maximum likelihood estimator with the purpose of improving its small sample efficiency while preserving a good robustness level. It has been published for the linear model and is now extended to the GLM. Monte Carlo experiments are used to explore the performance of this extension in the Poisson regression case. Several published robust candidates for the DCML are compared; the modified conditional maximum likelihood estimator starting with a very robust minimum density power divergence estimator is selected as the best candidate. It is shown empirically that the DCML remarkably improves its small sample efficiency without loss of robustness. An example using real hospital length of stay data fitted by the negative binomial regression model is discussed.

Suggested Citation

  • Alfio Marazzi, 2021. "Improving the Efficiency of Robust Estimators for the Generalized Linear Model," Stats, MDPI, vol. 4(1), pages 1-20, February.
  • Handle: RePEc:gam:jstats:v:4:y:2021:i:1:p:8-107:d:492885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/4/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/4/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neykov, N.M. & Filzmoser, P. & Neytchev, P.N., 2012. "Robust joint modeling of mean and dispersion through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 34-48, January.
    2. Alfio Marazzi & Marina Valdora & Victor Yohai & Michael Amiguet, 2019. "A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 223-241, March.
    3. Maronna, Ricardo A. & Yohai, Victor J., 2015. "High finite-sample efficiency and robustness based on distance-constrained maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 262-274.
    4. William H. Aeberhard & Eva Cantoni & Stephane Heritier, 2014. "Robust inference in the negative binomial regression model with an application to falls data," Biometrics, The International Biometric Society, vol. 70(4), pages 920-931, December.
    5. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    6. Howard D. Bondell & Leonard A. Stefanski, 2013. "Efficient Robust Regression via Two-Stage Generalized Empirical Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 644-655, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfio Marazzi & Marina Valdora & Victor Yohai & Michael Amiguet, 2019. "A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 223-241, March.
    2. Ayanendranath Basu & Abhik Ghosh & Abhijit Mandal & Nirian Martin & Leandro Pardo, 2021. "Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 973-1005, September.
    3. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    4. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    5. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear-Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 396-424, June.
    6. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    7. Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2023. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 385-410, Emerald Group Publishing Limited.
    8. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    9. Amos Golan & Enrico Moretti & Jeffrey M.Perloff, 2004. "A Small-Sample Estimator for the Sample-Selection Model," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 71-91.
    10. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.
    11. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017. "Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
    12. Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
    13. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2024. "Demand and Welfare Analysis in Discrete Choice Models with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 748-784.
    14. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    15. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    16. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    17. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    18. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    19. Bellemare, C. & Melenberg, B. & van Soest, A.H.O., 2002. "Semi-parametric Models for Satisfaction with Income," Discussion Paper 2002-87, Tilburg University, Center for Economic Research.
    20. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    21. Gordon B. Dahl, 2002. "Mobility and the Return to Education: Testing a Roy Model with Multiple Markets," Econometrica, Econometric Society, vol. 70(6), pages 2367-2420, November.
    22. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:4:y:2021:i:1:p:8-107:d:492885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.