IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i4p902-909.html
   My bibliography  Save this article

Regression analysis of correlated ordinal data using orthogonalized residuals

Author

Listed:
  • J. Perin
  • J. S. Preisser
  • C. Phillips
  • B. Qaqish

Abstract

No abstract is available for this item.

Suggested Citation

  • J. Perin & J. S. Preisser & C. Phillips & B. Qaqish, 2014. "Regression analysis of correlated ordinal data using orthogonalized residuals," Biometrics, The International Biometric Society, vol. 70(4), pages 902-909, December.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:902-909
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12210
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beth A. Reboussin & John S. Preisser & Eun-Young Song & Mark Wolfson, 2012. "Sample size estimation for alternating logistic regressions analysis of multilevel randomized community trials of under-age drinking," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(3), pages 691-712, July.
    2. Bahjat F. Qaqish & Richard C. Zink & John S. Preisser, 2012. "Orthogonalized Residuals for Estimation of Marginally Specified Association Parameters in Multivariate Binary Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(3), pages 515-527, September.
    3. Anestis Touloumis & Alan Agresti & Maria Kateri, 2013. "GEE for Multinomial Responses Using a Local Odds Ratios Parameterization," Biometrics, The International Biometric Society, vol. 69(3), pages 633-640, September.
    4. Anders Ekholm & Jukka Jokinen & John W. McDonald & Peter W. F. Smith, 2003. "Joint Regression and Association Modeling of Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 59(4), pages 795-803, December.
    5. Anthony Y. C. Kuk, 2007. "A Hybrid Pairwise Likelihood Method," Biometrika, Biometrika Trust, vol. 94(4), pages 939-952.
    6. Anthony Y. C. Kuk, 2004. "Permutation invariance of alternating logistic regression for multivariate binary data," Biometrika, Biometrika Trust, vol. 91(3), pages 758-761, September.
    7. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuela Cattelan & Cristiano Varin, 2013. "Hybrid Pairwise Likelihood Analysis of Animal Behavior Experiments," Biometrics, The International Biometric Society, vol. 69(4), pages 1002-1011, December.
    2. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    3. Jamie Perin & John S. Preisser, 2017. "Alternating logistic regressions with improved finite sample properties," Biometrics, The International Biometric Society, vol. 73(2), pages 696-705, June.
    4. Yuqi Tian & Bryan E. Shepherd & Chun Li & Donglin Zeng & Jonathan S. Schildcrout, 2023. "Analyzing clustered continuous response variables with ordinal regression models," Biometrics, The International Biometric Society, vol. 79(4), pages 3764-3777, December.
    5. Eiji Nakashima & Kazuo Neriishi & Atsushi Minamoto, 2008. "Comparison of methods for ordinal lens opacity data from atomic-bomb survivors: univariate worse-eye method and bivariate GEE method using global odds ratio," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 465-482, September.
    6. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    7. Rana, Subrata & Roy, Surupa & Das, Kalyan, 2018. "Analysis of ordinal longitudinal data under nonignorable missingness and misreporting: An application to Alzheimer’s disease study," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 62-77.
    8. Gem Stapleton & Peter Chapman & Peter Rodgers & Anestis Touloumis & Andrew Blake & Aidan Delaney, 2019. "The efficacy of Euler diagrams and linear diagrams for visualizing set cardinality using proportions and numbers," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-25, March.
    9. Lee, Keunbaik & Sohn, Insuk & Kim, Donguk, 2016. "Analysis of long series of longitudinal ordinal data using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 363-371.
    10. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
    11. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    12. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    13. Molin Wang & John M. Williamson, 2005. "Generalization of the Mantel–Haenszel Estimating Function for Sparse Clustered Binary Data," Biometrics, The International Biometric Society, vol. 61(4), pages 973-981, December.
    14. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    15. Nooraee, Nazanin & Molenberghs, Geert & van den Heuvel, Edwin R., 2014. "GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 70-83.
    16. Yingye Zheng & Patrick J. Heagerty & Li Hsu & Polly A. Newcomb, 2010. "On Combining Family-Based and Population-Based Case–Control Data in Association Studies," Biometrics, The International Biometric Society, vol. 66(4), pages 1024-1033, December.
    17. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    18. Yu, Lei & Tyas, Suzanne L. & Snowdon, David A. & Kryscio, Richard J., 2009. "Effects of ignoring baseline on modeling transitions from intact cognition to dementia," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3334-3343, July.
    19. Roula Tsonaka & Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2010. "Nonignorable Models for Intermittently Missing Categorical Longitudinal Responses," Biometrics, The International Biometric Society, vol. 66(3), pages 834-844, September.
    20. Özgür Asar & Ozlem Ilk, 2016. "First-order marginalised transition random effects models with probit link function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 925-942, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:902-909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.