IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp363-371.html
   My bibliography  Save this article

Analysis of long series of longitudinal ordinal data using marginalized models

Author

Listed:
  • Lee, Keunbaik
  • Sohn, Insuk
  • Kim, Donguk

Abstract

Marginalized models (Heagerty, 1999, 2002) are often used for short longitudinal series when population averaged effects are of interest. Lee and Daniels (2007, 2008) proposed marginalized models for the analysis of longitudinal ordinal data to permit likelihood-based estimation of marginal mean parameters. In this paper, we extend their work to accommodate the response dependence that we have seen with long series of response data (the functional form of response dependence has both serial and long-range components). Maximum likelihood estimation is proposed utilizing the Quasi-Newton algorithm with a Quasi Monte Carlo method for integration of the random effects. The methods are illustrated on quality of life data from a recent lung cancer clinical trial.

Suggested Citation

  • Lee, Keunbaik & Sohn, Insuk & Kim, Donguk, 2016. "Analysis of long series of longitudinal ordinal data using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 363-371.
  • Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:363-371
    DOI: 10.1016/j.csda.2015.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731500167X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    2. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
    3. Lee, Keunbaik & Mercante, Donald, 2010. "Longitudinal nominal data analysis using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 208-218, January.
    4. Robert Gibbons & R. Bock, 1987. "Trend in correlated proportions," Psychometrika, Springer;The Psychometric Society, vol. 52(1), pages 113-124, March.
    5. Patrick J. Heagerty, 2002. "Marginalized Transition Models and Likelihood Inference for Longitudinal Categorical Data," Biometrics, The International Biometric Society, vol. 58(2), pages 342-351, June.
    6. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    7. Keunbaik Lee & Sanggil Kang & Xuefeng Liu & Daekwan Seo, 2011. "Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1577-1590, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Keunbaik & Joo, Yongsung, 2019. "Marginalized models for longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 47-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Keunbaik & Joo, Yongsung, 2019. "Marginalized models for longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 47-58.
    2. Özgür Asar & Ozlem Ilk, 2016. "First-order marginalised transition random effects models with probit link function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 925-942, April.
    3. Keunbaik Lee & Sanggil Kang & Xuefeng Liu & Daekwan Seo, 2011. "Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1577-1590, July.
    4. Jonathan S. Schildcrout & Patrick J. Heagerty, 2011. "Outcome-Dependent Sampling from Existing Cohorts with Longitudinal Binary Response Data: Study Planning and Analysis," Biometrics, The International Biometric Society, vol. 67(4), pages 1583-1593, December.
    5. Jonathan S. Schildcrout & Paul J. Rathouz, 2010. "Longitudinal Studies of Binary Response Data Following Case–Control and Stratified Case–Control Sampling: Design and Analysis," Biometrics, The International Biometric Society, vol. 66(2), pages 365-373, June.
    6. Lee, Keunbaik & Mercante, Donald, 2010. "Longitudinal nominal data analysis using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 208-218, January.
    7. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    8. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    9. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    10. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    11. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
    12. Loni Philip Tabb & Eric J. Tchetgen Tchetgen & Greg A. Wellenius & Brent A. Coull, 2016. "Marginalized Zero-Altered Models for Longitudinal Count Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 181-203, October.
    13. Lee, Keunbaik & Lee, JungBok & Hagan, Joseph & Yoo, Jae Keun, 2012. "Modeling the random effects covariance matrix for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1545-1551.
    14. Gul Inan & Ozlem Ilk, 2019. "A marginalized multilevel model for bivariate longitudinal binary data," Statistical Papers, Springer, vol. 60(3), pages 601-628, June.
    15. Rana, Subrata & Roy, Surupa & Das, Kalyan, 2018. "Analysis of ordinal longitudinal data under nonignorable missingness and misreporting: An application to Alzheimer’s disease study," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 62-77.
    16. Lee, Keunbaik & Joo, Yongsung & Song, Joon Jin & Harper, Dee Wood, 2011. "Analysis of zero-inflated clustered count data: A marginalized model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 824-837, January.
    17. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    18. M.J. Daniels & C. Wang & B.H. Marcus, 2014. "Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates," Biometrics, The International Biometric Society, vol. 70(1), pages 62-72, March.
    19. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    20. Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:363-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.