IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v77y2014icp70-83.html
   My bibliography  Save this article

GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN

Author

Listed:
  • Nooraee, Nazanin
  • Molenberghs, Geert
  • van den Heuvel, Edwin R.

Abstract

Studies in epidemiology and social sciences are often longitudinal and outcome measures are frequently obtained by questionnaires in ordinal scales. To understand the relationship between explanatory variables and outcome measures, generalized estimating equations can be applied to provide a population-averaged interpretation and address the correlation between outcome measures. It can be performed by different software packages, but a motivating example showed differences in the output. This paper investigated the performance of GEE in R (version 3.0.2), SAS (version 9.4), and SPSS (version 22.0.0) using simulated data under default settings. Multivariate logistic distributions were used in the simulation to generate correlated ordinal data. The simulation study demonstrated substantial bias in the parameter estimates and numerical issues for data sets with relative small number of subjects. The unstructured working association matrix requires larger numbers of subjects than the independence and exchangeable working association matrices to reduce the bias and diminish numerical issues. The coverage probabilities of the confidence intervals for fixed parameters were satisfactory for the independence and exchangeable working association matrix, but they were frequently liberal for the unstructured option. Based on the performance and the available options, SPSS and multgee, and repolr in R all perform quite well for relatively large sample sizes (e.g. 300 subjects), but multgee seems to do a little better than SPSS and repolr in most settings.

Suggested Citation

  • Nooraee, Nazanin & Molenberghs, Geert & van den Heuvel, Edwin R., 2014. "GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 70-83.
  • Handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:70-83
    DOI: 10.1016/j.csda.2014.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000863
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Rao Chaganty & Harry Joe, 2006. "Range of correlation matrices for dependent Bernoulli random variables," Biometrika, Biometrika Trust, vol. 93(1), pages 197-206, March.
    2. Anestis Touloumis & Alan Agresti & Maria Kateri, 2013. "GEE for Multinomial Responses Using a Local Odds Ratios Parameterization," Biometrics, The International Biometric Society, vol. 69(3), pages 633-640, September.
    3. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    4. N. Rao Chaganty & Harry Joe, 2004. "Efficiency of generalized estimating equations for binary responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 851-860, November.
    5. Parsons, Nick R. & Costa, Matthew L. & Achten, Juul & Stallard, Nigel, 2009. "Repeated measures proportional odds logistic regression analysis of ordinal score data in the statistical software package R," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 632-641, January.
    6. Zengri Wang, 2003. "Matching conditional and marginal shapes in binary random intercept models using a bridge distribution function," Biometrika, Biometrika Trust, vol. 90(4), pages 765-775, December.
    7. Wei Pan, 2001. "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 57(1), pages 120-125, March.
    8. Nores, Maria Laura & Diaz, Maria del Pilar, 2008. "Some properties of regression estimators in GEE models for clustered ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3877-3888, March.
    9. Alan Agresti & Ranjini Natarajan, 2001. "Modeling Clustered Ordered Categorical Data: A Survey," International Statistical Review, International Statistical Institute, vol. 69(3), pages 345-371, December.
    10. Højsgaard, Søren & Halekoh, Ulrich & Yan, Jun, 2005. "The R Package geepack for Generalized Estimating Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i02).
    11. Ivy Liu & Alan Agresti, 2005. "The analysis of ordered categorical data: An overview and a survey of recent developments," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 1-73, June.
    12. Molenberghs, Geert & Kenward, Michael G., 2010. "Semi-parametric marginal models for hierarchical data and their corresponding full models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 585-597, February.
    13. Oster, Robert A. & Hilbe, Joseph M., 2008. "An Examination of Statistical Software Packages for Parametric and Nonparametric Data Analyses Using Exact Methods," The American Statistician, American Statistical Association, vol. 62, pages 74-84, February.
    14. Li, Yonghai & Schafer, Daniel W., 2008. "Likelihood analysis of the multivariate ordinal probit regression model for repeated ordinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3474-3492, March.
    15. N. R. Parsons & R. N. Edmondson & S. G. Gilmour, 2006. "A generalized estimating equation method for fitting autocorrelated ordinal score data with an application in horticultural research," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(4), pages 507-524, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eliseth Ribeiro Leão & Daniela Reis Dal Fabbro & Rebeca Barqueiro de Oliveira & Ingrid Ribeiro dos Santos & Elivane da Silva Victor & Rita Lacerda Aquarone & Cristiane Benvenuto Andrade & Vivian Finot, 2017. "Stress, self-esteem and well-being among female health professionals: A randomized clinical trial on the impact of a self-care intervention mediated by the senses," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-19, February.
    2. G. Inan & R. Yucel, 2017. "Joint GEEs for multivariate correlated data with incomplete binary outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1920-1937, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruce J. Swihart & Brian S. Caffo & Ciprian M. Crainiceanu, 2014. "A Unifying Framework for Marginalised Random-Intercept Models of Correlated Binary Outcomes," International Statistical Review, International Statistical Institute, vol. 82(2), pages 275-295, August.
    2. Huang, Youjun & Pan, Jianxin, 2021. "Joint generalized estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    3. Yuqi Tian & Bryan E. Shepherd & Chun Li & Donglin Zeng & Jonathan S. Schildcrout, 2023. "Analyzing clustered continuous response variables with ordinal regression models," Biometrics, The International Biometric Society, vol. 79(4), pages 3764-3777, December.
    4. Anestis Touloumis & Alan Agresti & Maria Kateri, 2013. "GEE for Multinomial Responses Using a Local Odds Ratios Parameterization," Biometrics, The International Biometric Society, vol. 69(3), pages 633-640, September.
    5. Vens, Maren & Ziegler, Andreas, 2012. "Generalized estimating equations and regression diagnostics for longitudinal controlled clinical trials: A case study," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1232-1242.
    6. Lisa Bellinghausen & Nicolas Vaillant, 2010. "Les déterminants du stress professionnel ressenti : une estimation par la méthode des équations d’estimation généralisées," Économie et Prévision, Programme National Persée, vol. 195(4), pages 67-82.
    7. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Carlos Alberto GÓMEZ SILVA, 2014. "Clasificación de colegios según las Pruebas SABER 11 del ICFES en el Período 2001-2011: un Análisis Longitudinal a Través del Uso de Modelos Marginales (MM)," Archivos de Economía 12314, Departamento Nacional de Planeación.
    9. Alessandro Barbiero, 2021. "Inducing a desired value of correlation between two point-scale variables: a two-step procedure using copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 307-334, June.
    10. Högberg, Hans & Svensson, Elisabeth, 2008. "An Overview of Methods in the Analysis of Dependent ordered catagorical Data: Assumptions and Implications," Working Papers 2008:7, Örebro University, School of Business.
    11. Francis L. Huang, 2022. "Analyzing Cross-Sectionally Clustered Data Using Generalized Estimating Equations," Journal of Educational and Behavioral Statistics, , vol. 47(1), pages 101-125, February.
    12. Li, Yonghai & Schafer, Daniel W., 2008. "Likelihood analysis of the multivariate ordinal probit regression model for repeated ordinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3474-3492, March.
    13. Dale Bowman & E. Olusegun George, 2017. "Weighted least squares estimation for exchangeable binary data," Computational Statistics, Springer, vol. 32(4), pages 1747-1765, December.
    14. Deng, Yihao & Sabo, Roy T. & Chaganty, N. Rao, 2012. "Multivariate probit analysis of binary familial data using stochastic representations," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 656-663.
    15. Fontana, Roberto & Semeraro, Patrizia, 2018. "Representation of multivariate Bernoulli distributions with a given set of specified moments," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 290-303.
    16. Högberg, Hans & Svensson, Elisabeth, 2008. "Comparison of methods in the analysis of dependent ordered catagorical data," Working Papers 2008:6, Örebro University, School of Business.
    17. Roy T. Sabo & N. Rao Chaganty, 2011. "Letter to the Editor of Biometrics on “Joint Regression Analysis for Discrete Longitudinal Data” by Madsen and Fang," Biometrics, The International Biometric Society, vol. 67(4), pages 1669-1670, December.
    18. Oman, Samuel D., 2009. "Easily simulated multivariate binary distributions with given positive and negative correlations," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 999-1005, February.
    19. Parsons, Nick R. & Costa, Matthew L. & Achten, Juul & Stallard, Nigel, 2009. "Repeated measures proportional odds logistic regression analysis of ordinal score data in the statistical software package R," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 632-641, January.
    20. Daniel Fernández & Louise McMillan & Richard Arnold & Martin Spiess & Ivy Liu, 2022. "Goodness-of-Fit and Generalized Estimating Equation Methods for Ordinal Responses Based on the Stereotype Model," Stats, MDPI, vol. 5(2), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:70-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.