IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i4p1024-1033.html
   My bibliography  Save this article

On Combining Family-Based and Population-Based Case–Control Data in Association Studies

Author

Listed:
  • Yingye Zheng
  • Patrick J. Heagerty
  • Li Hsu
  • Polly A. Newcomb

Abstract

No abstract is available for this item.

Suggested Citation

  • Yingye Zheng & Patrick J. Heagerty & Li Hsu & Polly A. Newcomb, 2010. "On Combining Family-Based and Population-Based Case–Control Data in Association Studies," Biometrics, The International Biometric Society, vol. 66(4), pages 1024-1033, December.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:4:p:1024-1033
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2010.01393.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    2. J. M. Neuhaus & A. J. Scott & C. J. Wild, 2006. "Family-Specific Approaches to the Analysis of Case–Control Family Data," Biometrics, The International Biometric Society, vol. 62(2), pages 488-494, June.
    3. J. Neuhaus, 2002. "The analysis of retrospective family studies," Biometrika, Biometrika Trust, vol. 89(1), pages 23-37, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan S. Schildcrout & Paul J. Rathouz, 2010. "Longitudinal Studies of Binary Response Data Following Case–Control and Stratified Case–Control Sampling: Design and Analysis," Biometrics, The International Biometric Society, vol. 66(2), pages 365-373, June.
    2. John M. Neuhaus & Alastair J. Scott & Christopher J. Wild & Yannan Jiang & Charles E. McCulloch & Ross Boylan, 2014. "Likelihood-based analysis of longitudinal data from outcome-related sampling designs," Biometrics, The International Biometric Society, vol. 70(1), pages 44-52, March.
    3. Jonathan S. Schildcrout & Shawn P. Garbett & Patrick J. Heagerty, 2013. "Outcome Vector Dependent Sampling with Longitudinal Continuous Response Data: Stratified Sampling Based on Summary Statistics," Biometrics, The International Biometric Society, vol. 69(2), pages 405-416, June.
    4. Jonathan S. Schildcrout & Patrick J. Heagerty, 2011. "Outcome-Dependent Sampling from Existing Cohorts with Longitudinal Binary Response Data: Study Planning and Analysis," Biometrics, The International Biometric Society, vol. 67(4), pages 1583-1593, December.
    5. Glen McGee & Jonathan Schildcrout & Sharon‐Lise Normand & Sebastien Haneuse, 2020. "Outcome‐dependent sampling in cluster‐correlated data settings with application to hospital profiling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 379-402, January.
    6. Sara Sauer & Bethany Hedt‐Gauthier & Claudia Rivera‐Rodriguez & Sebastien Haneuse, 2022. "Small‐sample inference for cluster‐based outcome‐dependent sampling schemes in resource‐limited settings: Investigating low birthweight in Rwanda," Biometrics, The International Biometric Society, vol. 78(2), pages 701-715, June.
    7. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
    8. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    9. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    10. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    11. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    12. Yu, Lei & Tyas, Suzanne L. & Snowdon, David A. & Kryscio, Richard J., 2009. "Effects of ignoring baseline on modeling transitions from intact cognition to dementia," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3334-3343, July.
    13. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    14. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    15. J. M. Neuhaus & A. J. Scott & C. J. Wild, 2006. "Family-Specific Approaches to the Analysis of Case–Control Family Data," Biometrics, The International Biometric Society, vol. 62(2), pages 488-494, June.
    16. Judith Clarke & Nilanjana Roy & Marsha Courchane, 2009. "On the robustness of racial discrimination findings in mortgage lending studies," Applied Economics, Taylor & Francis Journals, vol. 41(18), pages 2279-2297.
    17. Samuel Iddi & Geert Molenberghs, 2012. "A joint marginalized multilevel model for longitudinal outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2413-2430, July.
    18. Raymond J. Carroll, 2003. "Variances Are Not Always Nuisance Parameters," Biometrics, The International Biometric Society, vol. 59(2), pages 211-220, June.
    19. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.
    20. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:4:p:1024-1033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.