IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i5p925-942.html
   My bibliography  Save this article

First-order marginalised transition random effects models with probit link function

Author

Listed:
  • Özgür Asar
  • Ozlem Ilk

Abstract

Marginalised models, also known as marginally specified models, have recently become a popular tool for analysis of discrete longitudinal data. Despite being a novel statistical methodology, these models introduce complex constraint equations and model fitting algorithms. On the other hand, there is a lack of publicly available software to fit these models. In this paper, we propose a three-level marginalised model for analysis of multivariate longitudinal binary outcome. The implicit function theorem is introduced to approximately solve the marginal constraint equations explicitly. probit link enables direct solutions to the convolution equations. Parameters are estimated by maximum likelihood via a Fisher--Scoring algorithm. A simulation study is conducted to examine the finite-sample properties of the estimator. We illustrate the model with an application to the data set from the Iowa Youth and Families Project. The R package pnmtrem is prepared to fit the model.

Suggested Citation

  • Özgür Asar & Ozlem Ilk, 2016. "First-order marginalised transition random effects models with probit link function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 925-942, April.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:5:p:925-942
    DOI: 10.1080/02664763.2015.1080670
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1080670
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1080670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Keunbaik & Mercante, Donald, 2010. "Longitudinal nominal data analysis using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 208-218, January.
    2. Molenberghs, Geert & Verbeke, Geert, 2007. "Likelihood Ratio, Score, and Wald Tests in a Constrained Parameter Space," The American Statistician, American Statistical Association, vol. 61, pages 22-27, February.
    3. Caffo, Brian & Griswold, Michael, 2006. "A User-Friendly Introduction to Link-Probit-Normal Models," The American Statistician, American Statistical Association, vol. 60, pages 139-145, May.
    4. Herron, Michael C., 1999. "Postestimation Uncertainty in Limited Dependent Variable Models," Political Analysis, Cambridge University Press, vol. 8(1), pages 83-98, January.
    5. Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
    6. Patrick J. Heagerty, 2002. "Marginalized Transition Models and Likelihood Inference for Longitudinal Categorical Data," Biometrics, The International Biometric Society, vol. 58(2), pages 342-351, June.
    7. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    8. Lee, Keunbaik & Joo, Yongsung & Song, Joon Jin & Harper, Dee Wood, 2011. "Analysis of zero-inflated clustered count data: A marginalized model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 824-837, January.
    9. Emmanuel Lesaffre & Bart Spiessens, 2001. "On the effect of the number of quadrature points in a logistic random effects model: an example," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 325-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gul Inan & Ozlem Ilk, 2019. "A marginalized multilevel model for bivariate longitudinal binary data," Statistical Papers, Springer, vol. 60(3), pages 601-628, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Keunbaik & Joo, Yongsung, 2019. "Marginalized models for longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 47-58.
    2. Lee, Keunbaik & Sohn, Insuk & Kim, Donguk, 2016. "Analysis of long series of longitudinal ordinal data using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 363-371.
    3. Keunbaik Lee & Sanggil Kang & Xuefeng Liu & Daekwan Seo, 2011. "Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1577-1590, July.
    4. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
    5. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    6. Kenneth J. Wilkins & Garrett M. Fitzmaurice, 2006. "A Hybrid Model for Nonignorable Dropout in Longitudinal Binary Responses," Biometrics, The International Biometric Society, vol. 62(1), pages 168-176, March.
    7. Jonathan S. Schildcrout & Patrick J. Heagerty, 2007. "Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data," Biometrics, The International Biometric Society, vol. 63(2), pages 322-331, June.
    8. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
    9. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    10. Gul Inan & Ozlem Ilk, 2019. "A marginalized multilevel model for bivariate longitudinal binary data," Statistical Papers, Springer, vol. 60(3), pages 601-628, June.
    11. Jonathan S. Schildcrout & Patrick J. Heagerty, 2011. "Outcome-Dependent Sampling from Existing Cohorts with Longitudinal Binary Response Data: Study Planning and Analysis," Biometrics, The International Biometric Society, vol. 67(4), pages 1583-1593, December.
    12. Jonathan S. Schildcrout & Paul J. Rathouz, 2010. "Longitudinal Studies of Binary Response Data Following Case–Control and Stratified Case–Control Sampling: Design and Analysis," Biometrics, The International Biometric Society, vol. 66(2), pages 365-373, June.
    13. Lee, Keunbaik & Mercante, Donald, 2010. "Longitudinal nominal data analysis using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 208-218, January.
    14. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    15. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    16. Altaf H Khan, 2019. "An Application of Sinc Function based Quadrature Method in Statistical Models," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(4), pages 91-96, May.
    17. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    18. Chunlin Wang & Paul Marriott & Pengfei Li, 2022. "A note on the coverage behaviour of bootstrap percentile confidence intervals for constrained parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 809-831, October.
    19. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    20. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:5:p:925-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.