IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v166y2018icp62-77.html
   My bibliography  Save this article

Analysis of ordinal longitudinal data under nonignorable missingness and misreporting: An application to Alzheimer’s disease study

Author

Listed:
  • Rana, Subrata
  • Roy, Surupa
  • Das, Kalyan

Abstract

In many epidemiological and clinical studies, observations on individuals are recorded longitudinally on a Likert-type scale. In the process of recording, or due to some other causes, a proportion of outcomes and time-dependent covariates may be missing in one or more follow-up visits (non monotone missing). Even when the number of patients with intermittent missing data is small, exclusion of those patients from the study seems unsatisfactory. This apart, often due to misreporting, miscategorization of response can occur that results in potentially invalid inference when no correction is made. We propose a joint mixed model that corrects the likelihood function to account for missing response and/or covariates and adjusts the likelihood to tackle miscategorization of response. Under this extreme complex but useful setup, we seek to estimate the parameters of the proposed model that accounts for baseline and/or time dependent covariates. Monte Carlo expectation–maximization (MCEM) is a convenient approach for estimating the parameters in the model. A simulation study was carried out to assess the approach. We also analyzed Alzheimer’s Disease Neuroimaging Initiative (ADNI) data where some responses and covariates are missing and some responses are possibly miscategorized. Our investigation reveals that apolipo-protein plays a significant role in Alzheimer’s disease progression. This was not visible in earlier analyses of ADNI data.

Suggested Citation

  • Rana, Subrata & Roy, Surupa & Das, Kalyan, 2018. "Analysis of ordinal longitudinal data under nonignorable missingness and misreporting: An application to Alzheimer’s disease study," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 62-77.
  • Handle: RePEc:eee:jmvana:v:166:y:2018:i:c:p:62-77
    DOI: 10.1016/j.jmva.2018.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17303846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amy L. Stubbendick & Joseph G. Ibrahim, 2003. "Maximum Likelihood Methods for Nonignorable Missing Responses and Covariates in Random Effects Models," Biometrics, The International Biometric Society, vol. 59(4), pages 1140-1150, December.
    2. Chen, Baojiang & Yi, Grace Y. & Cook, Richard J., 2010. "Weighted Generalized Estimating Functions for Longitudinal Response and Covariate Data That Are Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 336-353.
    3. Wai-Yin Poon & Hai-Bin Wang, 2010. "Bayesian Analysis of Multivariate Probit Models with Surrogate Outcome Data," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 498-520, September.
    4. Patrick J. Heagerty, 1999. "Marginally Specified Logistic-Normal Models for Longitudinal Binary Data," Biometrics, The International Biometric Society, vol. 55(3), pages 688-698, September.
    5. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
    6. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    7. Li C. Liu & Donald Hedeker, 2006. "A Mixed-Effects Regression Model for Longitudinal Multivariate Ordinal Data," Biometrics, The International Biometric Society, vol. 62(1), pages 261-268, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
    2. Lee, Keunbaik & Sohn, Insuk & Kim, Donguk, 2016. "Analysis of long series of longitudinal ordinal data using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 363-371.
    3. Chen, Qingxia & Ibrahim, Joseph G. & Chen, Ming-Hui & Senchaudhuri, Pralay, 2008. "Theory and inference for regression models with missing responses and covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1302-1331, July.
    4. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    5. Fang, Fang & Shao, Jun, 2016. "Iterated imputation estimation for generalized linear models with missing response and covariate values," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 111-123.
    6. Lee, Keunbaik & Joo, Yongsung, 2019. "Marginalized models for longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 47-58.
    7. Lan Huang & Ming-Hui Chen & Joseph G. Ibrahim, 2005. "Bayesian Analysis for Generalized Linear Models with Nonignorably Missing Covariates," Biometrics, The International Biometric Society, vol. 61(3), pages 767-780, September.
    8. Lin, Kuo-Chin, 2010. "Goodness-of-fit tests for modeling longitudinal ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1872-1880, July.
    9. Yang, Miao & Das, Kalyan & Majumdar, Anandamayee, 2016. "Analysis of bivariate zero inflated count data with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 73-82.
    10. Jason Roy & Xihong Lin, 2005. "Missing Covariates in Longitudinal Data with Informative Dropouts: Bias Analysis and Inference," Biometrics, The International Biometric Society, vol. 61(3), pages 837-846, September.
    11. Lee, Keunbaik & Mercante, Donald, 2010. "Longitudinal nominal data analysis using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 208-218, January.
    12. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    13. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    14. Takahiro Hoshino & Yuya Shimizu, 2019. "Doubly Robust-type Estimation of Population Moments and Parameters in Biased Sampling," Keio-IES Discussion Paper Series 2019-006, Institute for Economics Studies, Keio University.
    15. Iddi Samuel & Nwoko Esther O., 2017. "Effect of covariate misspecifications in the marginalized zero-inflated Poisson model," Monte Carlo Methods and Applications, De Gruyter, vol. 23(2), pages 111-120, June.
    16. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
    17. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    18. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    19. Jason Roy & Michael J. Daniels, 2008. "A General Class of Pattern Mixture Models for Nonignorable Dropout with Many Possible Dropout Times," Biometrics, The International Biometric Society, vol. 64(2), pages 538-545, June.
    20. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:166:y:2018:i:c:p:62-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.