IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i4p1033-1041.html
   My bibliography  Save this article

Power calculation for comparing diagnostic accuracies in a multi-reader, multi-test design

Author

Listed:
  • Eunhee Kim
  • Zheng Zhang
  • Youdan Wang
  • Donglin Zeng

Abstract

No abstract is available for this item.

Suggested Citation

  • Eunhee Kim & Zheng Zhang & Youdan Wang & Donglin Zeng, 2014. "Power calculation for comparing diagnostic accuracies in a multi-reader, multi-test design," Biometrics, The International Biometric Society, vol. 70(4), pages 1033-1041, December.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:1033-1041
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12240
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lori E. Dodd & Margaret S. Pepe, 2003. "Partial AUC Estimation and Regression," Biometrics, The International Biometric Society, vol. 59(3), pages 614-623, September.
    2. Mei‐Ling Ting Lee & Herold G. Dehling, 2005. "Generalized two‐sample U‐statistics for clustered data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(3), pages 313-323, August.
    3. Li, Gang & Zhou, Kefei, 2008. "A Unified Approach to Nonparametric Comparison of Receiver Operating Characteristic Curves for Longitudinal and Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 705-713, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    2. Margaret Sullivan Pepe & Tianxi Cai, 2004. "The Analysis of Placement Values for Evaluating Discriminatory Measures," Biometrics, The International Biometric Society, vol. 60(2), pages 528-535, June.
    3. Man-Jen Hsu & Huey-Miin Hsueh, 2013. "The linear combinations of biomarkers which maximize the partial area under the ROC curves," Computational Statistics, Springer, vol. 28(2), pages 647-666, April.
    4. Mst. Papia Sultana and Jialiang Li & Jianhua Hu, 2015. "Comparison of three-dimensional ROC surfaces for clustered and correlated markers, with a proteomics application," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 399-418, November.
    5. Soutik Ghosal & Zhen Chen, 2022. "Discriminatory Capacity of Prenatal Ultrasound Measures for Large-for-Gestational-Age Birth: A Bayesian Approach to ROC Analysis Using Placement Values," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 1-22, April.
    6. Holly Janes & Gary Longton & Margaret S. Pepe, 2009. "Accommodating covariates in receiver operating characteristic analysis," Stata Journal, StataCorp LP, vol. 9(1), pages 17-39, March.
    7. Gigliarano, Chiara & Figini, Silvia & Muliere, Pietro, 2014. "Making classifier performance comparisons when ROC curves intersect," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 300-312.
    8. Yu, Wenbao & Park, Taesung, 2015. "Two simple algorithms on linear combination of multiple biomarkers to maximize partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 15-27.
    9. Yousef, Waleed A., 2013. "Assessing classifiers in terms of the partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 51-70.
    10. Margaret S. Pepe & Gary Longton & Holly Janes, 2009. "Estimation and comparison of receiver operating characteristic curves," Stata Journal, StataCorp LP, vol. 9(1), pages 1-16, March.
    11. Pardo-Fernandez, Juan Carlos & Rodriguez-alvarez, Maria Xose & Van Keilegom, Ingrid, 2013. "A review on ROC curves in the presence of covariates," LIDAM Discussion Papers ISBA 2013050, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Mei-Cheng Wang & Shanshan Li, 2012. "Bivariate Marker Measurements and ROC Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1207-1218, December.
    13. Haataja, Riina & Larocque, Denis & Nevalainen, Jaakko & Oja, Hannu, 2009. "A weighted multivariate signed-rank test for cluster-correlated data," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1107-1119, July.
    14. Hung Hung & Chin‐Tsang Chiang, 2010. "Optimal Composite Markers for Time‐Dependent Receiver Operating Characteristic Curves with Censored Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 664-679, December.
    15. Merve Basol & Dincer Goksuluk & Ergun Karaagaoglu, 2023. "Comparing the diagnostic performance of methods used in a full-factorial design multi-reader multi-case studies," Computational Statistics, Springer, vol. 38(3), pages 1537-1553, September.
    16. Jialiang Li & Jason P. Fine, 2010. "Weighted area under the receiver operating characteristic curve and its application to gene selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 673-692, August.
    17. Gunther Glehr & Paloma Riquelme & Katharina Kronenberg & Robert Lohmayer & Víctor J. López-Madrona & Michael Kapinsky & Hans J. Schlitt & Edward K. Geissler & Rainer Spang & Sebastian Haferkamp & Jame, 2024. "Restricting datasets to classifiable samples augments discovery of immune disease biomarkers," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    18. Tianxi Cai & Yingye Zheng, 2007. "Model Checking for ROC Regression Analysis," Biometrics, The International Biometric Society, vol. 63(1), pages 152-163, March.
    19. Wei Zhang & Larry L. Tang & Qizhai Li & Aiyi Liu & Mei‐Ling Ting Lee, 2020. "Order‐restricted inference for clustered ROC data with application to fingerprint matching accuracy," Biometrics, The International Biometric Society, vol. 76(3), pages 863-873, September.
    20. Bernard Rosner & Robert J. Glynn & Mei-Ling T. Lee, 2006. "Extension of the Rank Sum Test for Clustered Data: Two-Group Comparisons with Group Membership Defined at the Subunit Level," Biometrics, The International Biometric Society, vol. 62(4), pages 1251-1259, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:1033-1041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.