IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i3p863-873.html
   My bibliography  Save this article

Order‐restricted inference for clustered ROC data with application to fingerprint matching accuracy

Author

Listed:
  • Wei Zhang
  • Larry L. Tang
  • Qizhai Li
  • Aiyi Liu
  • Mei‐Ling Ting Lee

Abstract

Receiver operating characteristic (ROC) curve is commonly used to evaluate and compare the accuracy of classification methods or markers. Estimating ROC curves has been an important problem in various fields including biometric recognition and diagnostic medicine. In real applications, classification markers are often developed under two or more ordered conditions, such that a natural stochastic ordering exists among the observations. Incorporating such a stochastic ordering into estimation can improve statistical efficiency (Davidov and Herman, 2012). In addition, clustered and correlated data arise when multiple measurements are gleaned from the same subject, making estimation of ROC curves complicated due to within‐cluster correlations. In this article, we propose to model the ROC curve using a weighted empirical process to jointly account for the order constraint and within‐cluster correlation structure. The algebraic properties of resulting summary statistics of the ROC curve such as its area and partial area are also studied. The algebraic expressions reduce to the ones by Davidov and Herman (2012) for independent observations. We derive asymptotic properties of the proposed order‐restricted estimators and show that they have smaller mean‐squared errors than the existing estimators. Simulation studies also demonstrate better performance of the newly proposed estimators over existing methods for finite samples. The proposed method is further exemplified with the fingerprint matching data from the National Institute of Standards and Technology Special Database 4.

Suggested Citation

  • Wei Zhang & Larry L. Tang & Qizhai Li & Aiyi Liu & Mei‐Ling Ting Lee, 2020. "Order‐restricted inference for clustered ROC data with application to fingerprint matching accuracy," Biometrics, The International Biometric Society, vol. 76(3), pages 863-873, September.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:863-873
    DOI: 10.1111/biom.13177
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13177
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ori Davidov & Amir Herman, 2012. "Ordinal dominance curve based inference for stochastically ordered distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(5), pages 825-847, November.
    2. Peddada, Shyamal D. & Dinse, Gregg E. & Kissling, Grace E., 2007. "Incorporating Historical Control Data When Comparing Tumor Incidence Rates," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1212-1220, December.
    3. Margaret Pepe & Holly Janes & Gary Longton & Wendy Leisenring & Polly Newcomb, 2004. "Limitations of the Odds Ratio in Gauging the Performance of a Diagnostic or Prognostic Marker," UW Biostatistics Working Paper Series 1035, Berkeley Electronic Press.
    4. Li, Gang & Zhou, Kefei, 2008. "A Unified Approach to Nonparametric Comparison of Receiver Operating Characteristic Curves for Longitudinal and Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 705-713, June.
    5. Christopher A. Carolan & Joshua M. Tebbs, 2005. "Nonparametric tests for and against likelihood ratio ordering in the two-sample problem," Biometrika, Biometrika Trust, vol. 92(1), pages 159-171, March.
    6. Beom Seuk Hwang & Zhen Chen, 2015. "An Integrated Bayesian Nonparametric Approach for Stochastic and Variability Orders in ROC Curve Estimation: An Application to Endometriosis Diagnosis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 923-934, September.
    7. Nevalainen, Jaakko & Larocque, Denis & Oja, Hannu & Pörsti, Ilkka, 2010. "Nonparametric Analysis of Clustered Multivariate Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 864-872.
    8. Peter Xue‐Kun Song, 2000. "Multivariate Dispersion Models Generated From Gaussian Copula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 305-320, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Sun & Yu Cheng & Ying Ding, 2023. "An information ratio‐based goodness‐of‐fit test for copula models on censored data," Biometrics, The International Biometric Society, vol. 79(3), pages 1713-1725, September.
    2. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    3. Debashis Ghosh & Michael S. Sabel, 2022. "A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 363-379, December.
    4. Eunhee Kim & Zheng Zhang & Youdan Wang & Donglin Zeng, 2014. "Power calculation for comparing diagnostic accuracies in a multi-reader, multi-test design," Biometrics, The International Biometric Society, vol. 70(4), pages 1033-1041, December.
    5. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
    6. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    7. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
    8. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    9. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    10. Philipp Arbenz, 2013. "Bayesian Copulae Distributions, with Application to Operational Risk Management—Some Comments," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 105-108, March.
    11. Aljoscha Benjamin Hwang & Guido Schuepfer & Mario Pietrini & Stefan Boes, 2021. "External validation of EPIC’s Risk of Unplanned Readmission model, the LACE+ index and SQLape as predictors of unplanned hospital readmissions: A monocentric, retrospective, diagnostic cohort study in," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-33, November.
    12. Hu, Zhen & Mahadevan, Sankaran, 2019. "Probability models for data-Driven global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 40-57.
    13. Fredy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Empirical Performance of an ESG Assets Portfolio from US Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1569-1638, September.
    14. Anna-Karin Ivert & Marie Torstensson Levander & Juan Merlo, 2013. "Adolescents' Utilisation of Psychiatric Care, Neighbourhoods and Neighbourhood Socioeconomic Deprivation: A Multilevel Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    15. Azam, Kazim, 2014. "Effects of Marginal Specifcations on Copula Estimation," Economic Research Papers 270230, University of Warwick - Department of Economics.
    16. Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
    17. Yang Li & Asim Ansari, 2014. "A Bayesian Semiparametric Approach for Endogeneity and Heterogeneity in Choice Models," Management Science, INFORMS, vol. 60(5), pages 1161-1179, May.
    18. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    19. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    20. Ori Davidov & George Iliopoulos, 2012. "Estimating a distribution function subject to a stochastic order restriction: a comparative study," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 923-933, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:863-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.