IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v69y2015i4p399-418.html
   My bibliography  Save this article

Comparison of three-dimensional ROC surfaces for clustered and correlated markers, with a proteomics application

Author

Listed:
  • Mst. Papia Sultana and Jialiang Li
  • Jianhua Hu

Abstract

type="main" xml:id="stan12065-abs-0001"> We propose a non-parametric test to compare two correlated diagnostic tests for a three-category classification problem. Our development was motivated by a proteomic study where the objectives are to detect glycan biomarkers for liver cancer and to compare the discrimination ability of various markers. Three distinct disease categories need to be identified from this analysis. We therefore chose to use three-dimensional receiver operating characteristic (ROC) surfaces and volumes under the ROC surfaces to describe the overall accuracy for different biomarkers. Each marker in this study might include a cluster of similar individual markers and thus was considered as a hierarchically structured sample. Our proposed statistical test incorporated the within-marker correlation as well as the between-marker correlation. We derived asymptotic distributions for three-dimensional ROC surfaces and subsequently implemented bootstrap methods to facilitate the inferences. Simulation and real-data analysis were included to illustrate our methods. Our distribution-free test may be simplified for paired and independent two-sample comparisons as well. Previously, only parametric tests were known for clustered and correlated three-category ROC analyses.

Suggested Citation

  • Mst. Papia Sultana and Jialiang Li & Jianhua Hu, 2015. "Comparison of three-dimensional ROC surfaces for clustered and correlated markers, with a proteomics application," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 399-418, November.
  • Handle: RePEc:bla:stanee:v:69:y:2015:i:4:p:399-418
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/stan.12065
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & Stephen M.‐S. Lee & G. Alastair Young, 2000. "Importance of interpolation when constructing double‐bootstrap confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 479-491.
    2. Li, Gang & Zhou, Kefei, 2008. "A Unified Approach to Nonparametric Comparison of Receiver Operating Characteristic Curves for Longitudinal and Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 705-713, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    2. Luis Alexander Crouch & Cheng Zheng & Ying Qing Chen, 2017. "Estimating a Treatment Effect in Residual Time Quantiles Under the Additive Hazards Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 298-315, June.
    3. Hung Hung & Chin‐Tsang Chiang, 2010. "Optimal Composite Markers for Time‐Dependent Receiver Operating Characteristic Curves with Censored Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 664-679, December.
    4. Eunhee Kim & Zheng Zhang & Youdan Wang & Donglin Zeng, 2014. "Power calculation for comparing diagnostic accuracies in a multi-reader, multi-test design," Biometrics, The International Biometric Society, vol. 70(4), pages 1033-1041, December.
    5. Wei Zhang & Larry L. Tang & Qizhai Li & Aiyi Liu & Mei‐Ling Ting Lee, 2020. "Order‐restricted inference for clustered ROC data with application to fingerprint matching accuracy," Biometrics, The International Biometric Society, vol. 76(3), pages 863-873, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:69:y:2015:i:4:p:399-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.