IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2118-d1429798.html
   My bibliography  Save this article

Joint Statistical Inference for the Area under the ROC Curve and Youden Index under a Density Ratio Model

Author

Listed:
  • Siyan Liu

    (KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai 200062, China)

  • Qinglong Tian

    (Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Yukun Liu

    (KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai 200062, China)

  • Pengfei Li

    (Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

Abstract

The receiver operating characteristic (ROC) curve is a valuable statistical tool in medical research. It assesses a biomarker’s ability to distinguish between diseased and healthy individuals. The area under the ROC curve ( A U C ) and the Youden index ( J ) are common summary indices used to evaluate a biomarker’s diagnostic accuracy. Simultaneously examining A U C and J offers a more comprehensive understanding of the ROC curve’s characteristics. In this paper, we utilize a semiparametric density ratio model to link the distributions of a biomarker for healthy and diseased individuals. Under this model, we establish the joint asymptotic normality of the maximum empirical likelihood estimator of ( A U C , J ) and construct an asymptotically valid confidence region for ( A U C , J ) . Furthermore, we propose a new test to determine whether a biomarker simultaneously exceeds prespecified target values of A U C 0 and J 0 with the null hypothesis H 0 : A U C ≤ A U C 0 or J ≤ J 0 against the alternative hypothesis H a : A U C > A U C 0 and J > J 0 . Simulation studies and a real data example on Duchenne Muscular Dystrophy are used to demonstrate the effectiveness of our proposed method and highlight its advantages over existing methods.

Suggested Citation

  • Siyan Liu & Qinglong Tian & Yukun Liu & Pengfei Li, 2024. "Joint Statistical Inference for the Area under the ROC Curve and Youden Index under a Density Ratio Model," Mathematics, MDPI, vol. 12(13), pages 1-21, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2118-:d:1429798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Biao, 2006. "A semiparametric hypothesis testing procedure for the ROC curve area under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1855-1876, April.
    2. Leonidas E. Bantis & Christos T. Nakas & Benjamin Reiser, 2014. "Construction of confidence regions in the ROC space after the estimation of the optimal Youden index-based cut-off point," Biometrics, The International Biometric Society, vol. 70(1), pages 212-223, March.
    3. Lori E. Dodd & Margaret S. Pepe, 2003. "Partial AUC Estimation and Regression," Biometrics, The International Biometric Society, vol. 59(3), pages 614-623, September.
    4. Jing Qin, 2003. "Using logistic regression procedures for estimating receiver operating characteristic curves," Biometrika, Biometrika Trust, vol. 90(3), pages 585-596, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gigliarano, Chiara & Figini, Silvia & Muliere, Pietro, 2014. "Making classifier performance comparisons when ROC curves intersect," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 300-312.
    2. Wan, Shuwen & Zhang, Biao, 2008. "Comparing correlated ROC curves for continuous diagnostic tests under density ratio models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 233-245, September.
    3. Jianfang Cao & Yanfei Li & Yun Tian, 2018. "Emotional modelling and classification of a large-scale collection of scene images in a cluster environment," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    4. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    5. Margaret Sullivan Pepe & Tianxi Cai, 2004. "The Analysis of Placement Values for Evaluating Discriminatory Measures," Biometrics, The International Biometric Society, vol. 60(2), pages 528-535, June.
    6. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Multiperiod Bankruptcy Prediction Models with Interpretable Single Models," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1357-1390, September.
    7. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
    8. Adimari, Gianfranco & To, Duc-Khanh & Chiogna, Monica & Scatozza, Francesca & Facchiano, Antonio, 2024. "Likelihood-type confidence regions for optimal sensitivity and specificity of a diagnostic test," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    9. Man-Jen Hsu & Huey-Miin Hsueh, 2013. "The linear combinations of biomarkers which maximize the partial area under the ROC curves," Computational Statistics, Springer, vol. 28(2), pages 647-666, April.
    10. Soutik Ghosal & Zhen Chen, 2022. "Discriminatory Capacity of Prenatal Ultrasound Measures for Large-for-Gestational-Age Birth: A Bayesian Approach to ROC Analysis Using Placement Values," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 1-22, April.
    11. Holly Janes & Gary Longton & Margaret S. Pepe, 2009. "Accommodating covariates in receiver operating characteristic analysis," Stata Journal, StataCorp LP, vol. 9(1), pages 17-39, March.
    12. William M. Briggs & Russell Zaretzki, 2008. "The Skill Plot: A Graphical Technique for Evaluating Continuous Diagnostic Tests," Biometrics, The International Biometric Society, vol. 64(1), pages 250-256, March.
    13. Luo, Jingqin & Xiong, Chengjie, 2012. "DiagTest3Grp: An R Package for Analyzing Diagnostic Tests with Three Ordinal Groups," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i03).
    14. Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
    15. B Rey deCastro, 2019. "Cumulative ROC curves for discriminating three or more ordinal outcomes with cutpoints on a shared continuous measurement scale," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-16, August.
    16. Zhang, Biao, 2006. "A semiparametric hypothesis testing procedure for the ROC curve area under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1855-1876, April.
    17. Yu, Wenbao & Park, Taesung, 2015. "Two simple algorithms on linear combination of multiple biomarkers to maximize partial area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 15-27.
    18. Jiang, Shan & Tu, Dongsheng, 2012. "Inference on the probability P(T1," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1069-1078.
    19. Margaret Sullivan Pepe, 2008. "Discussions," Biometrics, The International Biometric Society, vol. 64(1), pages 256-258, March.
    20. Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2118-:d:1429798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.