IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v59y2003i4p813-821.html
   My bibliography  Save this article

Smoothing for Spatiotemporal Models and Its Application to Modeling Muskrat-Mink Interaction

Author

Listed:
  • Wenyang Zhang
  • Qiwei Yao
  • Howell Tong
  • Nils Chr. Stenseth

Abstract

For a set of spatially dependent dynamical models, we propose a method for estimating parameters that control temporal dynamics by spatial smoothing. The new approach is particularly relevant for analyzing spatially distributed panels of short time series. The asymptotic results show that spatial smoothing will improve the estimation in the presence of nugget effect, even when the sample size in each location is large. The proposed methodology is used to analyze the annual mink and muskrat data collected in a period of 25 years in 81 Canadian locations. Based on the proposed method, we are able to model the temporal dynamics which reflects the food chain interaction of the two species.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Wenyang Zhang & Qiwei Yao & Howell Tong & Nils Chr. Stenseth, 2003. "Smoothing for Spatiotemporal Models and Its Application to Modeling Muskrat-Mink Interaction," Biometrics, The International Biometric Society, vol. 59(4), pages 813-821, December.
  • Handle: RePEc:bla:biomet:v:59:y:2003:i:4:p:813-821
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2003.00095.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Inge S. Helland, 2000. "Model Reduction for Prediction in Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 1-20, March.
    2. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    3. Jianqing Fan & Wenyang Zhang, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731, December.
    4. Yao, Qiwei & Tong, Howell & Finkenstädt, Bärbel & Stenseth, Nils Chr, 2000. "Common structure in panels of short time series," LSE Research Online Documents on Economics 6325, London School of Economics and Political Science, LSE Library.
    5. Marc Hallin & Zudi Lu & Lanh T. Tran, 2001. "Density estimation for spatial linear processes," ULB Institutional Repository 2013/2109, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Luati & Tommaso Proietti, 2010. "Hyper‐spherical and elliptical stochastic cycles," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 169-181, May.
    2. Ting Fung Ma & Fangfang Wang & Jun Zhu & Anthony R. Ives & Katarzyna E. Lewińska, 2023. "Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 279-298, June.
    3. Lu, Zudi & Tjøstheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3145-3151, December.
    4. Al-Sulami, Dawlah & Jiang, Zhenyu & Lu, Zudi & Zhu, Jun, 2017. "Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data," Econometrics and Statistics, Elsevier, vol. 2(C), pages 22-35.
    5. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Zudi & Lundervold, Arvid & Tjøstheim, Dag & Yao, Qiwei, 2007. "Exploring spatial nonlinearity using additive approximation," LSE Research Online Documents on Economics 5401, London School of Economics and Political Science, LSE Library.
    2. Frédéric Lavancier & Ronan Le Guével, 2021. "Spatial birth–death–move processes: Basic properties and estimation of their intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 798-825, September.
    3. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    4. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    5. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    6. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    7. Zhao, Zhibiao, 2011. "Nonparametric model validations for hidden Markov models with applications in financial econometrics," Journal of Econometrics, Elsevier, vol. 162(2), pages 225-239, June.
    8. Peter Robinson, 2011. "Inference on power law spatial trends," CeMMAP working papers CWP09/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Li, XiaoLi & You, JinHong, 2012. "Error covariance matrix correction based approach to functional coefficient regression models with generated covariates," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 263-281.
    10. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    11. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
    12. Zhibiao Zhao, 2015. "Inference for Local Autocorrelations in Locally Stationary Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 296-306, April.
    13. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.
    14. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    16. Christopher S Fowler, 2018. "Key assumptions in multiscale segregation measures: How zoning and strength of spatial association condition outcomes," Environment and Planning B, , vol. 45(6), pages 1055-1072, November.
    17. Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
    18. Jeffery Caroline & Ozonoff Al & White Laura Forsberg & Pagano Marcello, 2013. "Distance-Based Mapping of Disease Risk," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 265-290, May.
    19. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
    20. Zhao, Yan-Yong & Lin, Jin-Guan & Xu, Pei-Rong & Ye, Xu-Guo, 2015. "Orthogonality-projection-based estimation for semi-varying coefficient models with heteroscedastic errors," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 204-221.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:59:y:2003:i:4:p:813-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.