IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p684-694.html
   My bibliography  Save this article

Robust Bayesian variable selection for gene–environment interactions

Author

Listed:
  • Jie Ren
  • Fei Zhou
  • Xiaoxi Li
  • Shuangge Ma
  • Yu Jiang
  • Cen Wu

Abstract

Gene–environment (G× E) interactions have important implications to elucidate the etiology of complex diseases beyond the main genetic and environmental effects. Outliers and data contamination in disease phenotypes of G× E studies have been commonly encountered, leading to the development of a broad spectrum of robust regularization methods. Nevertheless, within the Bayesian framework, the issue has not been taken care of in existing studies. We develop a fully Bayesian robust variable selection method for G× E interaction studies. The proposed Bayesian method can effectively accommodate heavy‐tailed errors and outliers in the response variable while conducting variable selection by accounting for structural sparsity. In particular, for the robust sparse group selection, the spike‐and‐slab priors have been imposed on both individual and group levels to identify important main and interaction effects robustly. An efficient Gibbs sampler has been developed to facilitate fast computation. Extensive simulation studies, analysis of diabetes data with single‐nucleotide polymorphism measurements from the Nurses' Health Study, and The Cancer Genome Atlas melanoma data with gene expression measurements demonstrate the superior performance of the proposed method over multiple competing alternatives.

Suggested Citation

  • Jie Ren & Fei Zhou & Xiaoxi Li & Shuangge Ma & Yu Jiang & Cen Wu, 2023. "Robust Bayesian variable selection for gene–environment interactions," Biometrics, The International Biometric Society, vol. 79(2), pages 684-694, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:684-694
    DOI: 10.1111/biom.13670
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13670
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wu, Cen & Zhang, Qingzhao & Jiang, Yu & Ma, Shuangge, 2018. "Robust network-based analysis of the associations between (epi)genetic measurements," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 119-130.
    2. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    3. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    4. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Fei & Ren, Jie & Ma, Shuangge & Wu, Cen, 2023. "The Bayesian regularized quantile varying coefficient model," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
    2. Zijian Zeng & Meng Li, 2020. "Bayesian Median Autoregression for Robust Time Series Forecasting," Papers 2001.01116, arXiv.org, revised Dec 2020.
    3. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    4. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
    5. Zeng, Zijian & Li, Meng, 2021. "Bayesian median autoregression for robust time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1000-1010.
    6. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    7. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    8. Linhong Chen & Yue Zhuo & Zhiming Xu & Xiaocang Xu & Xin Gao, 2019. "Is Carbon Dioxide (CO 2 ) Emission an Important Factor Affecting Healthcare Expenditure? Evidence from China, 2005–2016," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
    9. Zhou, Fei & Ren, Jie & Ma, Shuangge & Wu, Cen, 2023. "The Bayesian regularized quantile varying coefficient model," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    10. Luke B. Smith, 2016. "Discussion," International Statistical Review, International Statistical Institute, vol. 84(3), pages 359-362, December.
    11. El Moctar Laghlal & Abdoul Aziz Junior Ndoye, 2018. "A Hybrid MCMC Sampler for Unconditional Quantile Based on Influence Function," Econometrics, MDPI, vol. 6(2), pages 1-11, May.
    12. Xiaocang Xu & Zhiming Xu & Linhong Chen & Chang Li, 2019. "How Does Industrial Waste Gas Emission Affect Health Care Expenditure in Different Regions of China: An Application of Bayesian Quantile Regression," IJERPH, MDPI, vol. 16(15), pages 1-12, August.
    13. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    14. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    15. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    16. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    17. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    18. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    19. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    20. Michel Lubrano & Abdoul Aziz Junior Ndoye, 2014. "Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992–2009," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(2), pages 129-153, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:684-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.