IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i3p1221-1232.html
   My bibliography  Save this article

Stratified Cox models with time‐varying effects for national kidney transplant patients: A new blockwise steepest ascent method

Author

Listed:
  • Kevin He
  • Ji Zhu
  • Jian Kang
  • Yi Li

Abstract

Analyzing the national transplant database, which contains about 300,000 kidney transplant patients treated in over 290 transplant centers, may guide the disease management and inform the policy of kidney transplantation. Cox models stratified by centers provide a convenient means to account for the clustered data structure, while studying more than 160 predictors with effects that may vary over time. As fitting a time‐varying effect model with such a large sample size may defy any existing software, we propose a blockwise steepest ascent procedure by leveraging the block structure of parameters inherent from the basis expansions for each coefficient function. The algorithm iteratively updates the optimal blockwise search direction, along which the increment of the partial likelihood is maximized. The proposed method can be interpreted from the perspective of the minorization‐maximization algorithm and increases the partial likelihood until convergence. We further propose a Wald statistic to test whether the effects are indeed time varying. We evaluate the utility of the proposed method via simulations. Finally, we apply the method to analyze the national kidney transplant data and detect the time‐varying nature of the effects of various risk factors.

Suggested Citation

  • Kevin He & Ji Zhu & Jian Kang & Yi Li, 2022. "Stratified Cox models with time‐varying effects for national kidney transplant patients: A new blockwise steepest ascent method," Biometrics, The International Biometric Society, vol. 78(3), pages 1221-1232, September.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1221-1232
    DOI: 10.1111/biom.13473
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13473
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Jason P. Estes & Danh V. Nguyen & Yanjun Chen & Lorien S. Dalrymple & Connie M. Rhee & Kamyar Kalantar‐Zadeh & Damla Şentürk, 2018. "Rejoinder: Time‐dynamic profiling with application to hospital readmission among patients on dialysis," Biometrics, The International Biometric Society, vol. 74(4), pages 1404-1406, December.
    3. Pan W., 2002. "A Note on the Use of Marginal Likelihood and Conditional Likelihood in Analyzing Clustered Data," The American Statistician, American Statistical Association, vol. 56, pages 171-174, August.
    4. Benjamin Hofner & Torsten Hothorn & Thomas Kneib, 2013. "Variable selection and model choice in structured survival models," Computational Statistics, Springer, vol. 28(3), pages 1079-1101, June.
    5. Jason P. Estes & Danh V. Nguyen & Yanjun Chen & Lorien S. Dalrymple & Connie M. Rhee & Kamyar Kalantar‐Zadeh & Damla Şentürk, 2018. "Time‐dynamic profiling with application to hospital readmission among patients on dialysis," Biometrics, The International Biometric Society, vol. 74(4), pages 1383-1394, December.
    6. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    7. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    3. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    4. Sebastien Haneuse & José Zubizarreta & Sharon‐Lise T. Normand, 2018. "Discussion on “Time‐dynamic profiling with application to hospital readmission among patients on dialysis,” by Jason P. Estes, Danh V. Nguyen, Yanjun Chen, Lorien S. Dalrymple, Connie M. Rhee, Kamyar ," Biometrics, The International Biometric Society, vol. 74(4), pages 1395-1397, December.
    5. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    6. Sariyar Murat & Schumacher Martin & Binder Harald, 2014. "A boosting approach for adapting the sparsity of risk prediction signatures based on different molecular levels," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 343-357, June.
    7. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    8. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    9. Wang Zhu, 2011. "HingeBoost: ROC-Based Boost for Classification and Variable Selection," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-30, February.
    10. Daye, Z. John & Jeng, X. Jessie, 2009. "Shrinkage and model selection with correlated variables via weighted fusion," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1284-1298, February.
    11. Honda, Toshio & Yabe, Ryota, 2017. "Variable selection and structure identification for varying coefficient Cox models," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 103-122.
    12. Yihao Li & Danh V. Nguyen & Esra Kürüm & Connie M. Rhee & Yanjun Chen & Kamyar Kalantar‐Zadeh & Damla Şentürk, 2020. "A multilevel mixed effects varying coefficient model with multilevel predictors and random effects for modeling hospitalization risk in patients on dialysis," Biometrics, The International Biometric Society, vol. 76(3), pages 924-938, September.
    13. Li‐Pang Chen & Grace Y. Yi, 2021. "Analysis of noisy survival data with graphical proportional hazards measurement error models," Biometrics, The International Biometric Society, vol. 77(3), pages 956-969, September.
    14. Kevin He & Claudia Dahlerus & Lu Xia & Yanming Li & John D. Kalbfleisch, 2020. "The profile inter‐unit reliability," Biometrics, The International Biometric Society, vol. 76(2), pages 654-663, June.
    15. repec:hum:wpaper:sfb649dp2012-061 is not listed on IDEAS
    16. HONDA, Toshio & 本田, 敏雄 & YABE, Ryota & 矢部, 竜太, 2017. "Variable selection and structure identification for varying coefficient Cox models," Discussion Papers 2016-05, Graduate School of Economics, Hitotsubashi University.
    17. Honda, Toshio & Härdle, Wolfgang Karl, 2012. "Variable selection in Cox regression models with varying coefficients," SFB 649 Discussion Papers 2012-061, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    19. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    20. Klaus Wohlrabe & Teresa Buchen, 2014. "Assessing the Macroeconomic Forecasting Performance of Boosting: Evidence for the United States, the Euro Area and Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 231-242, July.
    21. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1221-1232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.