IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i1p121-128.html
   My bibliography  Save this article

Identifiability of Causal Effects for Binary Variables with Baseline Data Missing Due to Death

Author

Listed:
  • Wei Yan
  • Yaqin Hu
  • Zhi Geng

Abstract

No abstract is available for this item.

Suggested Citation

  • Wei Yan & Yaqin Hu & Zhi Geng, 2012. "Identifiability of Causal Effects for Binary Variables with Baseline Data Missing Due to Death," Biometrics, The International Biometric Society, vol. 68(1), pages 121-128, March.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:1:p:121-128
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01653.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shepherd, Bryan E. & Redman, Mary W. & Ankerst, Donna P., 2008. "Does Finasteride Affect the Severity of Prostate Cancer? A Causal Sensitivity Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1392-1404.
    2. Constantine E. Frangakis & Donald B. Rubin & Ming-Wen An & Ellen MacKenzie, 2007. "Principal Stratification Designs to Estimate Input Data Missing Due to Death," Biometrics, The International Biometric Society, vol. 63(3), pages 641-649, September.
    3. Imai, Kosuke, 2008. "Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 144-149, February.
    4. Junni L. Zhang & Donald B. Rubin, 2003. "Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by “Deathâ€," Journal of Educational and Behavioral Statistics, , vol. 28(4), pages 353-368, December.
    5. Brian L. Egleston & Daniel O. Scharfstein & Ellen MacKenzie, 2009. "On Estimation of the Survivor Average Causal Effect in Observational Studies When Important Confounders Are Missing Due to Death," Biometrics, The International Biometric Society, vol. 65(2), pages 497-504, June.
    6. Tan, Zhiqiang, 2010. "Marginal and Nested Structural Models Using Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 157-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atanu Bhattacharjee, 2020. "Estimation of Treatment Effect with Missing Observations for Three Arms and Three Periods Crossover Clinical Trials," Annals of Data Science, Springer, vol. 7(3), pages 447-460, September.
    2. Yi He & Linzhi Zheng & Peng Luo, 2023. "Treatment Benefit and Treatment Harm Rates with Nonignorable Missing Covariate, Endpoint, or Treatment," Mathematics, MDPI, vol. 11(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    2. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    3. Linbo Wang & Thomas S. Richardson & Xiao-Hua Zhou, 2017. "Causal analysis of ordinal treatments and binary outcomes under truncation by death," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 719-735, June.
    4. Bryan E. Shepherd & Peter B. Gilbert & Charles T. Dupont, 2011. "Sensitivity Analyses Comparing Time-to-Event Outcomes Only Existing in a Subset Selected Postrandomization and Relaxing Monotonicity," Biometrics, The International Biometric Society, vol. 67(3), pages 1100-1110, September.
    5. Alessandra Mattei & Fabrizia Mealli & Barbara Pacini, 2014. "Identification of causal effects in the presence of nonignorable missing outcome values," Biometrics, The International Biometric Society, vol. 70(2), pages 278-288, June.
    6. Yi He & Linzhi Zheng & Peng Luo, 2023. "Treatment Benefit and Treatment Harm Rates with Nonignorable Missing Covariate, Endpoint, or Treatment," Mathematics, MDPI, vol. 11(21), pages 1-18, October.
    7. Anna M. Wilke & Donald P. Green & Jasper Cooper, 2020. "A placebo design to detect spillovers from an education–entertainment experiment in Uganda," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1075-1096, June.
    8. Chiba Yasutaka, 2012. "The Large Sample Bounds on the Principal Strata Effect with Application to a Prostate Cancer Prevention Trial," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, May.
    9. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    10. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    11. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    12. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
    13. Maria Josefsson & Michael J. Daniels, 2021. "Bayesian semi‐parametric G‐computation for causal inference in a cohort study with MNAR dropout and death," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 398-414, March.
    14. Brian L. Egleston & Daniel O. Scharfstein & Ellen MacKenzie, 2009. "On Estimation of the Survivor Average Causal Effect in Observational Studies When Important Confounders Are Missing Due to Death," Biometrics, The International Biometric Society, vol. 65(2), pages 497-504, June.
    15. A. Mattei & F. Mealli, 2007. "Application of the Principal Stratification Approach to the Faenza Randomized Experiment on Breast Self-Examination," Biometrics, The International Biometric Society, vol. 63(2), pages 437-446, June.
    16. Nobles, Jenna & Hamoudi, Amar, 2019. "Detecting the Effects of Early-Life Exposures: Why Fecundity Matters," SocArXiv x4zm6, Center for Open Science.
    17. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    18. Dustin M. Long & Michael G. Hudgens, 2013. "Sharpening Bounds on Principal Effects with Covariates," Biometrics, The International Biometric Society, vol. 69(4), pages 812-819, December.
    19. Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jul 2024.
    20. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:1:p:121-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.