IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i3p905-913.html
   My bibliography  Save this article

Dynamic Model for Multivariate Markers of Fecundability

Author

Listed:
  • Bo Cai
  • David B. Dunson
  • Joseph B. Stanford

Abstract

No abstract is available for this item.

Suggested Citation

  • Bo Cai & David B. Dunson & Joseph B. Stanford, 2010. "Dynamic Model for Multivariate Markers of Fecundability," Biometrics, The International Biometric Society, vol. 66(3), pages 905-913, September.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:3:p:905-913
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2009.01327.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valen Johnson, 2004. "A Bayesian Chi-Squared Test for Goodness of Fit," The University of Michigan Department of Biostatistics Working Paper Series 1000, Berkeley Electronic Press.
    2. Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
    3. Zeng, Leilei & Cook, Richard J., 2007. "Transition Models for Multivariate Longitudinal Binary Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 211-223, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artz G. Luwanda & Henry G. Mwambi, 2016. "A Nonlinear Mixed-Effects Model for Multivariate Longitudinal Data with Dropout with Application to HIV Disease Dynamics," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 277-294, June.
    2. Jiang, Jiakun & Lin, Huazhen & Zhong, Qingzhi & Li, Yi, 2022. "Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Bianconcini, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 466-468, September.
    2. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    3. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    4. Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
    5. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    6. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    7. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    8. Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
    9. Ziyue Liu & Anne R. Cappola & Leslie J. Crofford & Wensheng Guo, 2014. "Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 108-118, March.
    10. Danilo Fegatelli & Luca Tardella, 2013. "Improved inference on capture recapture models with behavioural effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 45-66, March.
    11. Cécile Proust & Hélène Jacqmin-Gadda & Jeremy M. G. Taylor & Julien Ganiayre & Daniel Commenges, 2006. "A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1014-1024, December.
    12. H. Zhang & Q. Yu & C. Feng & D. Gunzler & P. Wu & X. M. Tu, 2012. "A new look at the difference between the GEE and the GLMM when modeling longitudinal count responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 2067-2079, June.
    13. Song, Xin-Yuan & Tang, Nian-Sheng & Chow, Sy-Miin, 2012. "A Bayesian approach for generalized random coefficient structural equation models for longitudinal data with adjacent time effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4190-4203.
    14. Silvia Bianconcini & Silvia Cagnone, 2012. "A General Multivariate Latent Growth Model With Applications to Student Achievement," Journal of Educational and Behavioral Statistics, , vol. 37(2), pages 339-364, April.
    15. Cai, Bo & Dunson, David B., 2007. "Bayesian Multivariate Isotonic Regression Splines: Applications to Carcinogenicity Studies," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1158-1171, December.
    16. Jialiang Li & Shuangge Ma, 2010. "Interval‐censored data with repeated measurements and a cured subgroup," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 693-705, August.
    17. Kang, Xiaoning & Kang, Lulu & Chen, Wei & Deng, Xinwei, 2022. "A generative approach to modeling data with quantitative and qualitative responses," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    18. Minjeong Jeon & Sophia Rabe-Hesketh, 2016. "An autoregressive growth model for longitudinal item analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 830-850, September.
    19. Timothy D. Johnson, 2007. "Analysis of Pulsatile Hormone Concentration Profiles with Nonconstant Basal Concentration: A Bayesian Approach," Biometrics, The International Biometric Society, vol. 63(4), pages 1207-1217, December.
    20. Siliang Zhang & Yunxiao Chen, 2022. "Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1473-1502, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:3:p:905-913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.