IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i505p108-118.html
   My bibliography  Save this article

Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models

Author

Listed:
  • Ziyue Liu
  • Anne R. Cappola
  • Leslie J. Crofford
  • Wensheng Guo

Abstract

The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this article, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls. Supplementary materials for this article are available online.

Suggested Citation

  • Ziyue Liu & Anne R. Cappola & Leslie J. Crofford & Wensheng Guo, 2014. "Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 108-118, March.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:108-118
    DOI: 10.1080/01621459.2013.830071
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.830071
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.830071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wensheng Guo, 2002. "Functional Mixed Effects Models," Biometrics, The International Biometric Society, vol. 58(1), pages 121-128, March.
    2. Honghu Liu & Yan Zheng & Jie Shen, 2008. "Goodness-of-fit measures of R2 for repeated measures mixed effect models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1081-1092.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    4. Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
    5. S. J. Koopman & J. Durbin, 2003. "Filtering and smoothing of state vector for diffuse state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 85-98, January.
    6. Lan Zhou & Jianhua Z. Huang & Raymond J. Carroll, 2008. "Joint modelling of paired sparse functional data using principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 601-619.
    7. Jason Roy & Xihong Lin, 2000. "Latent Variable Models for Longitudinal Data with Multiple Continuous Outcomes," Biometrics, The International Biometric Society, vol. 56(4), pages 1047-1054, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    2. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    3. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    4. Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).
    5. B. Jungbacker & S.J. Koopman & M. van der Wel, 2009. "Dynamic Factor Analysis in The Presence of Missing Data," Tinbergen Institute Discussion Papers 09-010/4, Tinbergen Institute, revised 11 Mar 2011.
    6. Adjemian, Stéphane & Bastani, Houtan & Juillard, Michel & Karamé, Fréderic & Mihoubi, Ferhat & Mutschler, Willi & Pfeifer, Johannes & Ratto, Marco & Rion, Normann & Villemot, Sébastien, 2022. "Dynare: Reference Manual Version 5," Dynare Working Papers 72, CEPREMAP, revised Mar 2023.
      • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," PSE Working Papers hal-04219920, HAL.
      • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," Working Papers hal-04219920, HAL.
    7. Daniel Rees & David Lancaster & Richard Finlay, 2014. "A State-space Approach to Australian GDP Measurement," RBA Research Discussion Papers rdp2014-12, Reserve Bank of Australia.
    8. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448, September.
    9. Yuan Wang & Jianhua Hu & Kim-Anh Do & Brian P. Hobbs, 2019. "An Efficient Nonparametric Estimate for Spatially Correlated Functional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 162-183, April.
    10. Algaba, Andres & Borms, Samuel & Boudt, Kris & Verbeken, Brecht, 2023. "Daily news sentiment and monthly surveys: A mixed-frequency dynamic factor model for nowcasting consumer confidence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 266-278.
    11. repec:jss:jstsof:39:i02 is not listed on IDEAS
    12. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    13. Maarten Dossche & Gerdie Everaert, 2005. "Measuring Inflation Persistence: A Structural Time Series Approach," Computing in Economics and Finance 2005 459, Society for Computational Economics.
    14. Prashant Srivastava & Dawei Han & Miguel Rico-Ramirez & Deleen Al-Shrafany & Tanvir Islam, 2013. "Data Fusion Techniques for Improving Soil Moisture Deficit Using SMOS Satellite and WRF-NOAH Land Surface Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5069-5087, December.
    15. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
    16. Cécile Proust & Hélène Jacqmin-Gadda & Jeremy M. G. Taylor & Julien Ganiayre & Daniel Commenges, 2006. "A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1014-1024, December.
    17. Komi Nagbe & Jairo Cugliari & Julien Jacques, 2018. "Short-Term Electricity Demand Forecasting Using a Functional State Space Model," Energies, MDPI, vol. 11(5), pages 1-24, May.
    18. Adrian Pizzinga & Marcelo Fernandes, 2021. "Extensions to the invariance property of maximum likelihood estimation for affine‐transformed state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 355-371, May.
    19. Silvia Bianconcini & Silvia Cagnone, 2012. "A General Multivariate Latent Growth Model With Applications to Student Achievement," Journal of Educational and Behavioral Statistics, , vol. 37(2), pages 339-364, April.
    20. T. Berger & G. Everaert, 2006. "Re-examining the Structural and the Persistence Approach to Unemployment," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/383, Ghent University, Faculty of Economics and Business Administration.
    21. Adrian Pizzinga, 2010. "Constrained Kalman Filtering: Additional Results," International Statistical Review, International Statistical Institute, vol. 78(2), pages 189-208, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:108-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.