IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v64y2008i4p1238-1246.html
   My bibliography  Save this article

Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data–A Two-Stage Regression Calibration Approach

Author

Listed:
  • Wen Ye
  • Xihong Lin
  • Jeremy M. G. Taylor

Abstract

No abstract is available for this item.

Suggested Citation

  • Wen Ye & Xihong Lin & Jeremy M. G. Taylor, 2008. "Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data–A Two-Stage Regression Calibration Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1238-1246, December.
  • Handle: RePEc:bla:biomet:v:64:y:2008:i:4:p:1238-1246
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2007.00983.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharon X. Xie & C. Y. Wang & Ross L. Prentice, 2001. "A risk set calibration method for failure time regression by using a covariate reliability sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 855-870.
    2. Jane Xu & Scott L. Zeger, 2001. "The Evaluation of Multiple Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 57(1), pages 81-87, March.
    3. Elizabeth R. Brown & Joseph G. Ibrahim & Victor DeGruttola, 2005. "A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival," Biometrics, The International Biometric Society, vol. 61(1), pages 64-73, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nanhua Zhang & Henian Chen & Yuanshu Zou, 2014. "A joint model of binary and longitudinal data with non-ignorable missingness, with application to marital stress and late-life major depression in women," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 1028-1039, May.
    2. Angelo F. Elmi & Katherine L. Grantz & Paul S. Albert, 2018. "An approximate joint model for multiple paired longitudinal outcomes and time‐to‐event data," Biometrics, The International Biometric Society, vol. 74(3), pages 1112-1119, September.
    3. Paul S. Albert & Joanna H. Shih, 2010. "On Estimating the Relationship between Longitudinal Measurements and Time-to-Event Data Using a Simple Two-Stage Procedure," Biometrics, The International Biometric Society, vol. 66(3), pages 983-987, September.
    4. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    5. Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.
    6. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    7. Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
    8. Wen Ye & Jeremy M.G. Taylor & Xihong Lin, 2010. "The authors replied as follows:," Biometrics, The International Biometric Society, vol. 66(3), pages 987-991, September.
    9. Xiaobing Zhao & Xian Zhou, 2015. "Semiparametric models of longitudinal and time-to-event data with applications to HIV viral dynamics and CD4 counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2461-2477, November.
    10. Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
    11. Yanqin Feng & Ling Ma & Jianguo Sun, 2015. "Regression Analysis of Current Status Data Under the Additive Hazards Model with Auxiliary Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 118-136, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    2. Lisa M. McCrink & Adele H. Marshall & Karen J. Cairns, 2013. "Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients," International Statistical Review, International Statistical Institute, vol. 81(2), pages 249-269, August.
    3. Hongtu Zhu & Joseph G. Ibrahim & Yueh-Yun Chi & Niansheng Tang, 2012. "Bayesian Influence Measures for Joint Models for Longitudinal and Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 954-964, September.
    4. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
    5. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    6. Xiaomei Liao & David M. Zucker & Yi Li & Donna Spiegelman, 2011. "Survival Analysis with Error-Prone Time-Varying Covariates: A Risk Set Calibration Approach," Biometrics, The International Biometric Society, vol. 67(1), pages 50-58, March.
    7. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.
    8. Jiafeng Chen & David M. Ritzwoller, 2021. "Semiparametric Estimation of Long-Term Treatment Effects," Papers 2107.14405, arXiv.org, revised Aug 2023.
    9. Yangxin Huang & Xiaosun Lu & Jiaqing Chen & Juan Liang & Miriam Zangmeister, 2018. "Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 699-718, October.
    10. Rizopoulos, Dimitris, 2016. "The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i07).
    11. David B. Dunson & M. Watson & Jack A. Taylor, 2003. "Bayesian Latent Variable Models for Median Regression on Multiple Outcomes," Biometrics, The International Biometric Society, vol. 59(2), pages 296-304, June.
    12. Angela Dobson & Robin Henderson, 2003. "Diagnostics for Joint Longitudinal and Dropout Time Modeling," Biometrics, The International Biometric Society, vol. 59(4), pages 741-751, December.
    13. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    14. Ching‐Yun Wang & Xiao Song, 2021. "Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard," Biometrics, The International Biometric Society, vol. 77(2), pages 561-572, June.
    15. Xiao Song & Edward C. Chao & Ching‐Yun Wang, 2023. "A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure," Biometrics, The International Biometric Society, vol. 79(1), pages 437-448, March.
    16. Loucks, Eric B. & Juster, Robert P. & Pruessner, Jens C., 2008. "Neuroendocrine biomarkers, allostatic load, and the challenge of measurement: A commentary on Gersten," Social Science & Medicine, Elsevier, vol. 66(3), pages 525-530, February.
    17. repec:jss:jstsof:35:i09 is not listed on IDEAS
    18. Chin-Tsang Chiang, 2011. "A more flexible joint latent model for longitudinal and survival time data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 151-170, March.
    19. Yijian Huang & Ching†Yun Wang, 2018. "Cox regression with dependent error in covariates," Biometrics, The International Biometric Society, vol. 74(1), pages 118-126, March.
    20. Lihui Zhao & Tom Chen & Vladimir Novitsky & Rui Wang, 2021. "Joint penalized spline modeling of multivariate longitudinal data, with application to HIV‐1 RNA load levels and CD4 cell counts," Biometrics, The International Biometric Society, vol. 77(3), pages 1061-1074, September.
    21. Yueh-Yun Chi & Joseph G. Ibrahim, 2006. "Joint Models for Multivariate Longitudinal and Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 62(2), pages 432-445, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:64:y:2008:i:4:p:1238-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.