IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i3p1112-1119.html
   My bibliography  Save this article

An approximate joint model for multiple paired longitudinal outcomes and time‐to‐event data

Author

Listed:
  • Angelo F. Elmi
  • Katherine L. Grantz
  • Paul S. Albert

Abstract

Joint modeling of multivariate paired longitudinal data and time‐to‐event data presents computational challenges that supersede full likelihood estimation due to the large dimensional random effects vector needed to capture correlation due to clustering with respect to pairs, subjects, and outcomes. We propose an alternative, computationally simpler approach to estimation of complex shared parameter models where missing data is imputed based on the Posterior Predictive Distribution from a Conditional Linear Model (CLM) approximation. Existing methods for complete data are then implemented to obtain estimates of the event time model parameters. Our method is applied to examine the effects of discordant growth in anthropometric measures of longitudinal fetal growth in twin fetuses and the timing of birth. Simulation results are presented to show that our method performs relatively well with moderate measurement errors under certain CLM approximations.

Suggested Citation

  • Angelo F. Elmi & Katherine L. Grantz & Paul S. Albert, 2018. "An approximate joint model for multiple paired longitudinal outcomes and time‐to‐event data," Biometrics, The International Biometric Society, vol. 74(3), pages 1112-1119, September.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1112-1119
    DOI: 10.1111/biom.12862
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12862
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen Ye & Xihong Lin & Jeremy M. G. Taylor, 2008. "Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data–A Two-Stage Regression Calibration Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1238-1246, December.
    2. Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
    3. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    4. Joseph W. Hogan & Xihong Lin & Benjamin Herman, 2004. "Mixtures of Varying Coefficient Models for Longitudinal Data with Discrete or Continuous Nonignorable Dropout," Biometrics, The International Biometric Society, vol. 60(4), pages 854-864, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Ye & Jeremy M.G. Taylor & Xihong Lin, 2010. "The authors replied as follows:," Biometrics, The International Biometric Society, vol. 66(3), pages 987-991, September.
    2. Chuan Hong & Yang Ning & Peng Wei & Ying Cao & Yong Chen, 2017. "A semiparametric model for vQTL mapping," Biometrics, The International Biometric Society, vol. 73(2), pages 571-581, June.
    3. Jaroslaw Harezlak & Louise M. Ryan & Jay N. Giedd & Nicholas Lange, 2005. "Individual and Population Penalized Regression Splines for Accelerated Longitudinal Designs," Biometrics, The International Biometric Society, vol. 61(4), pages 1037-1048, December.
    4. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    5. Jeonghye Choi & David R. Bell & Leonard M. Lodish, 2012. "Traditional and IS-Enabled Customer Acquisition on the Internet," Management Science, INFORMS, vol. 58(4), pages 754-769, April.
    6. Wei Liu & Lang Wu, 2007. "Simultaneous Inference for Semiparametric Nonlinear Mixed-Effects Models with Covariate Measurement Errors and Missing Responses," Biometrics, The International Biometric Society, vol. 63(2), pages 342-350, June.
    7. Christopher H. Morrell & Larry J. Brant & Shan Sheng & E. Jeffrey Metter, 2012. "Screening for prostate cancer using multivariate mixed-effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1151-1175, November.
    8. Padayachee Trishanta & Khamiakova Tatsiana & Shkedy Ziv & Salo Perttu & Perola Markus & Burzykowski Tomasz, 2019. "A multivariate linear model for investigating the association between gene-module co-expression and a continuous covariate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(2), pages 1-13, April.
    9. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    10. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    11. Chiara Brombin & Luigi Salmaso & Lara Fontanella & Luigi Ippoliti, 2015. "Nonparametric combination-based tests in dynamic shape analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 460-484, December.
    12. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    13. Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
    14. Francisco Ocaña & Ana Aguilera & Manuel Escabias, 2007. "Computational considerations in functional principal component analysis," Computational Statistics, Springer, vol. 22(3), pages 449-465, September.
    15. Alexander Robitzsch, 2024. "A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items," Stats, MDPI, vol. 7(3), pages 1-16, June.
    16. Margaux Delporte & Steffen Fieuws & Geert Molenberghs & Geert Verbeke & Simeon Situma Wanyama & Elpis Hatziagorou & Christiane De Boeck, 2022. "A joint normal‐binary (probit) model," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 37-51, December.
    17. Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
    18. Mahdiyeh, Zahra & Kazemi, Iraj, 2019. "An innovative strategy on the construction of multivariate multimodal linear mixed-effects models," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    19. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    20. Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1112-1119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.