A joint latent class changepoint model to improve the prediction of time to graft failure
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-985X.2007.00514.x
Download full text from publisher
References listed on IDEAS
- Elizabeth R. Brown & Joseph G. Ibrahim, 2003. "Bayesian Approaches to Joint Cure-Rate and Longitudinal Models with Applications to Cancer Vaccine Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 686-693, September.
- Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
- Donna K. Pauler & Nan M. Laird, 2000. "A Mixture Model for Longitudinal Data with Application to Assessment of Noncompliance," Biometrics, The International Biometric Society, vol. 56(2), pages 464-472, June.
- Elizabeth R. Brown & Joseph G. Ibrahim & Victor DeGruttola, 2005. "A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival," Biometrics, The International Biometric Society, vol. 61(1), pages 64-73, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Yue & Liu, Lei & Zhou, Jianhui, 2015. "Joint latent class model of survival and longitudinal data: An application to CPCRA study," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 40-50.
- Bartolucci, Al & Bae, Sejong & Singh, Karan & Griffith, H. Randall, 2009. "An examination of Bayesian statistical approaches to modeling change in cognitive decline in an Alzheimer's disease population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 561-571.
- Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
- Getachew A. Dagne, 2021. "Bayesian Quantile Bent-Cable Growth Models for Longitudinal Data with Skewness and Detection Limit," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 129-141, April.
- Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
- Eleni†Rosalina Andrinopoulou & Paul H. C. Eilers & Johanna J. M. Takkenberg & Dimitris Rizopoulos, 2018. "Improved dynamic predictions from joint models of longitudinal and survival data with time†varying effects using P†splines," Biometrics, The International Biometric Society, vol. 74(2), pages 685-693, June.
- Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2014. "A joint longitudinal and survival model with health care usage for insured elderly," Working Papers 2014-07, Universitat de Barcelona, UB Riskcenter.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
- Yangxin Huang & Xiaosun Lu & Jiaqing Chen & Juan Liang & Miriam Zangmeister, 2018. "Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 699-718, October.
- Hongtu Zhu & Joseph G. Ibrahim & Yueh-Yun Chi & Niansheng Tang, 2012. "Bayesian Influence Measures for Joint Models for Longitudinal and Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 954-964, September.
- Bartolucci, Al & Bae, Sejong & Singh, Karan & Griffith, H. Randall, 2009. "An examination of Bayesian statistical approaches to modeling change in cognitive decline in an Alzheimer's disease population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 561-571.
- De la Cruz, Rolando & Meza, Cristian & Arribas-Gil, Ana & Carroll, Raymond J., 2016. "Bayesian regression analysis of data with random effects covariates from nonlinear longitudinal measurements," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 94-106.
- DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018.
"Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis,"
Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
- David E Allen & Michael McAleer & Robert J Powell & Abhay K Singh, 2013. "Nonparametric Multiple Change Point Analysis of the Global Financial Crisis," KIER Working Papers 866, Kyoto University, Institute of Economic Research.
- David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Nonparametric Multiple Change Point Analysis of the Global Financial Crisis," Tinbergen Institute Discussion Papers 13-072/III, Tinbergen Institute.
- David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Nonparametric Multiple Change Point Analysis of the Global Financial Crisis," Documentos de Trabajo del ICAE 2013-17, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Fitzpatrick, Matthew, 2014. "Geometric ergodicity of the Gibbs sampler for the Poisson change-point model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 55-61.
- John M. Maheu & Stephen Gordon, 2008.
"Learning, forecasting and structural breaks,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
- John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
- John M Maheu & Stephen Gordon, 2007. "Learning, Forecasting and Structural Breaks," Working Papers tecipa-284, University of Toronto, Department of Economics.
- Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
- Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008.
"A state-level analysis of the Great Moderation,"
Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
- Michael T. Owyang & Jeremy Piger & Howard J. Wall & Federal Reserve Bank of St. Louis, 2006. "A State-Level Analysis of the Great Moderation," Computing in Economics and Finance 2006 131, Society for Computational Economics.
- Michael T. Owyang & Jeremy M. Piger & Howard J. Wall, 2007. "A state-level analysis of the Great Moderation," Working Papers 2007-003, Federal Reserve Bank of St. Louis.
- Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
- Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
- Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
- Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
- Cathy W. S. Chen & Mike K. P. So, 2003. "Subset threshold autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 49-66.
- Fernando Ferraz do Nascimento & Wyara Vanesa Moura e Silva, 2017. "A Bayesian model for multiple change point to extremes, with application to environmental and financial data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2410-2426, October.
- Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
- Shaikh Mateen & McNicholas Paul D & Desmond Anthony F, 2010. "A Pseudo-EM Algorithm for Clustering Incomplete Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-17, March.
- Ľluboš Pástor & Robert F. Stambaugh, 2001.
"The Equity Premium and Structural Breaks,"
Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
- Lubos Pástor & Robert F. Stambaugh, "undated". "The Equity Premium and Structural Breaks," Rodney L. White Center for Financial Research Working Papers 21-98, Wharton School Rodney L. White Center for Financial Research.
- Lubos Pastor & Robert F. Stambaugh, 2000. "The Equity Premium and Structural Breaks," NBER Working Papers 7778, National Bureau of Economic Research, Inc.
- Lubos Pastor & Robert F. Stambaugh, "undated". "The Equity Premium and Structural Breaks," Rodney L. White Center for Financial Research Working Papers 11-00, Wharton School Rodney L. White Center for Financial Research.
- Luboš Pástor & Robert F. Stambaugh, 2000. "The Equity Premium and Structural Breaks," CRSP working papers 519, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
- Gordon, Stephen & Bélanger, Gilles, 1996.
"Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes,"
L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
- GORDON, Stephen & BÉLANGER, Gilles, 1995. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," Cahiers de recherche 9509, Université Laval - Département d'économique.
- Gordon, S. & Belanger, G., 1995. "Echantillonnage de Gibbs et autres application econometriques des chaines merkoviennes," Papers 9509, Laval - Recherche en Politique Economique.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:171:y:2008:i:1:p:299-308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.